No Arabic abstract
We report the detection of a new transient radio source, GCRT J1742-3001, located ~1 degree from the Galactic center. The source was detected ten times from late 2006 to 2007 May in our 235 MHz transient monitoring program with the Giant Metrewave Radio Telescope (GMRT). The radio emission brightened in about one month, reaching a peak observed flux density of ~100 mJy on 2007 January 28, and decaying to ~50 mJy by 2007 May when our last monitoring observation was made. Two additional faint, isolated 235 MHz detections were made in mid-2006, also with the GMRT. GCRT J1742-3001 is unresolved at each epoch, with typical resolutions of ~20 arcsec x 10 arcsec. No polarization information is available from the observations. Based on nondetections in observations obtained simultaneously at 610 MHz, we deduce that the spectrum of GCRT J1742-3001 is very steep, with a spectral index less than about -2. Follow-up radio observations in 2007 September at 330 MHz and 1.4 GHz, and in 2008 February at 235 MHz yielded no detections. No X-ray counterpart is detected in a serendipitous observation obtained with the X-ray telescope aboard the Swift satellite during the peak of the radio emission in early 2007. We consider the possibilities that GCRT J1742-3001 is either a new member of an existing class of radio transients, or is representative of a new class having no associated X-ray emission.
The radio sky is poorly sampled for rapidly varying transients because of the narrow field-of-view of most imaging radio telescopes at cm and shorter wavelengths. The emergence of sensitive long wavelength observations with intrinsically larger fields-of-view are changing this situation, as partly illustrated by our ongoing meter-wavelength monitoring observations and archival studies of the Galactic Center. In this search, we discovered a transient, bursting, radio source in the direction of the Galactic Center, GCRT J1745-3009, with extremely unusual properties. Its flux and rapid variability imply a brightness temperature >10^12 K if it is at a distance >70 pc, implying that it is a coherent emitter. I will discuss the discovery of the source and the subsequent re-detections, as well as searches for counterparts at other wavelengths, and several proposed models.
GCRT J1745-3009 is a transient bursting radio source located in the direction of the Galactic center. It was discovered in a 330 MHz VLA observation from 2002 September 30--October 1 and subsequently rediscovered in a 330 MHz GMRT observation from 2003 September 28 by Hyman et al. Here we report a new radio detection of the source in 330 MHz GMRT data taken on 2004 March 20. The observed properties of the single burst detected differ significantly from those measured previously, suggesting that GCRT J1745-3009 was detected in a new physical state. The 2004 flux density was ~0.05 Jy, ~10x weaker than the single 2003 burst and ~30x weaker than the five bursts detected in 2002. We derive a very steep spectral index, alpha = -13.5 +/- 3.0, across the bandpass, a new result previously not detectable due to limitations in the analysis of the 2002 and 2003 observations. Also, the burst was detected for only ~2 min., in contrast to the 10 min. duration observed in the earlier bursts. Due to sparse sampling, only the single burst was detected in 2004, as in the 2003 epoch, and we cannot rule out additional undetected bursts that may have occurred with the same ~77 min. periodicity observed in 2002 or with a different periodicity. Considering our total time on source throughout both our archival and active monitoring campaigns, we estimate the source exhibits detectable bursting activity ~7% of the time.
GCRT J1745-3009 is a transient bursting radio source located in the direction of the Galactic center, discovered in 330 MHz VLA observations from 2002 September 30--October 1 by Hyman et al. We have searched for bursting activity from GCRT J1745-3009 in nearly all of the available 330 MHz VLA observations of the Galactic center since 1989 as well as in 2003 GMRT observations. We report a new radio detection of the source in 330 MHz GMRT data taken on 2003 September 28. A single ~0.5 Jy burst was detected, approximately 3x weaker than the five bursts detected in 2002. Due to the sparse sampling of the 2003 observation, only the decay portion of a single burst was detected. We present additional evidence indicating that this burst is an isolated one, but we cannot completely rule out additional undetected bursts that may have occured with the same ~77 min. periodicity observed in 2002 or with a different periodicity. Assuming the peak emission was detected, the decay time of the burst, ~2 min, is consistent with that determined for the 2002 bursts. Based on the total time for which we have observations, we estimate that the source has a duty cycle of roughly 10%.
We report detection of strong circularly polarized emission from the transient bursting source GCRT J1745-3009 based on new analysis of 325 MHz GMRT observations conducted on 28 September 2003. We place 8 Solar radius as the upper limit on the size of the emission region. The implied high brightness temperature required for an object beyond 1 pc and the high fraction of circular polarization firmly establish the emission as coherent. Electron cyclotron or plasma emission from a highly subsolar magnetically dominated dwarf located less than 4 kpc away could have given rise to the GCRT radio emission.
The Galactic center (GC) is the densest region of the Milky Way. Variability surveys towards the GC potentially provide the largest number of variable stars per square degree within the Galaxy. However, high stellar density is also a drawback due to blending. Moreover, the GC is affected by extreme reddening, therefore near infrared observations are needed. We plan to detect new variable stars towards the GC, focusing on type II Cepheids (T2Cs) which have the advantage of being brighter than RR Lyrae stars. We perform parallel Lomb-Scargle and Generalized Lomb-Scargle periodogram analysis of the $K_s$-band time series of the VISTA variables in the Via Lactea survey, to detect periodicities. We employ statistical parameters to clean our sample. We take account of periods, light amplitudes, distances, and proper motions to provide a classification of the candidate variables. We detected 1,019 periodic variable stars, of which 164 are T2Cs, 210 are Miras and 3 are classical Cepheids. We also found the first anomalous Cepheid in this region. We compare their photometric properties with overlapping catalogs and discuss their properties on the color-magnitude and Bailey diagrams. We present the most extensive catalog of T2Cs in the GC region to date. Offsets in E($J-K_s$) and in the reddening law cause very large ($sim$1-2 kpc) uncertainties on distances in this region. We provide a catalog which will be the starting point for future spectroscopic surveys in the innermost regions of the Galaxy.