Do you want to publish a course? Click here

Possible canonical distributions for finite systems with nonadditive energy

138   0   0.0 ( 0 )
 Added by Congjie Ou
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is shown that a small system in thermodynamic equilibrium with a finite thermostat can have a q-exponential probability distribution which closely depends on the energy nonextensivity and the particle number of the thermostat. The distribution function will reduce to the exponential one at the thermodynamic limit. However, the nonextensivity of the system should not be neglected.



rate research

Read More

A nonadditive generalization of Klimontovichs S-theorem [G. B. Bagci, Int.J. Mod. Phys. B 22, 3381 (2008)] has recently been obtained by employing Tsallis entropy. This general version allows one to study physical systems whose stationary distributions are of the inverse power law in contrast to the original S-theorem, which only allows exponential stationary distributions. The nonadditive S-theorem has been applied to the modified Van der Pol oscillator with inverse power law stationary distribution. By using nonadditive S-theorem, it is shown that the entropy decreases as the system is driven out of equilibrium, indicating self-organization in the system. The allowed values of the nonadditivity index $q$ are found to be confined to the regime (0.5,1].
Boltzmann-Gibbs statistical mechanics applies satisfactorily to a plethora of systems. It fails however for complex systems generically involving strong space-time entanglement. Its generalization based on nonadditive $q$-entropies adequately handles a wide class of such systems. We show here that scale-invariant networks belong to this class. We numerically study a $d$-dimensional geographically located network with weighted links and exhibit its energy distribution per site at its quasi-stationary state. Our results strongly suggest a correspondence between the random geometric problem and a class of thermal problems within the generalised thermostatistics. The Boltzmann-Gibbs exponential factor is generically substituted by its $q$-generalisation, and is recovered in the $q=1$ limit when the nonlocal effects fade away. The present connection should cross-fertilise experiments in both research areas.
We present exact and asymptotic results for clusters in the one-dimensional totally asymmetric exclusion process (TASEP) with two different dynamics. The expected length of the largest cluster is shown to diverge logarithmically with increasing system size for ordinary TASEP dynamics and as a logarithm divided by a double logarithm for generalized dynamics, where the hopping probability of a particle depends on the size of the cluster it belongs to. The connection with the asymptotic theory of extreme order statistics is discussed in detail. We also consider a related model of interface growth, where the deposited particles are allowed to relax to the local gravitational minimum.
We analyse four approaches to elimination of a fast variable, which are applicable to systems like passive Brownian particles: (i) moment formalism, (ii) corresponding cumulant formalism, (iii) Hermite function basis, (iv) formal `cumulants for the Hermit function basis. The accuracy and its strong order are assessed. The applicability and performance of two first approaches are also demonstrated for active Brownian particles.
485 - E. Boscheto , M. de Souza , 2016
The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit $N rightarrow infty$) non-interacting oscillators vibrating at the same frequency ($omega$). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einsteins model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying $N$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا