We report on our study of the free-fall expansion of a finite-temperature Bose-Einstein condensed cloud of 87Rb. The experiments are performed with a variable total number of atoms while keeping constant the number of atoms in the condensate. The results provide evidence that the BEC dynamics depends on the interaction with thermal fraction. In particular, they provide experimental evidence that thermal cloud compresses the condensate.
The behavior of the spatial two-particle correlation function is surveyed in detail for a uniform 1D Bose gas with repulsive contact interactions at finite temperatures. Both long-, medium-, and short-range effects are investigated. The results span the entire range of physical regimes, from ideal gas, to strongly interacting, and from zero temperature to high temperature. We present perturbative analytic methods, available at strong and weak coupling, and first-principle numerical results using imaginary time simulations with the gauge-P representation in regimes where perturbative methods are invalid. Nontrivial effects are observed from the interplay of thermally induced bunching behavior versus interaction induced antibunching.
We simulate numerically the free expansion of a repulsive Bose-Einstein condensate with an initially Gaussian density profile. We find a self-similar expansion only for weak inter-atomic repulsion. In contrast, for strong repulsion we observe the spontaneous formation of a shock wave at the surface followed by a significant depletion inside the cloud. In the expansion, contrary to the case of a classical viscous gas, the quantum fluid can generate radial rarefaction density waves with several minima and maxima. These intriguing nonlinear effects, never observed yet in free-expansion experiments with ultra-cold alkali-metal atoms, can be detected with the available setups.
We derive the criteria for the Thomas-Fermi regime of a dipolar Bose-Einstein condensate in cigar, pancake and spherical geometries. This also naturally gives the criteria for the mean-field one- and two-dimensional regimes. Our predictions, including the Thomas-Fermi density profiles, are shown to be in excellent agreement with numerical solutions. Importantly, the anisotropy of the interactions has a profound effect on the Thomas-Fermi/low-dimensional criteria.
We determine the energy density $xi (3/5) n epsilon_F$ and the gradient correction $lambda hbar^2( abla n)^2/(8m n)$ of the extended Thomas-Fermi (ETF) density functional, where $n$ is number density and $epsilon_F$ is Fermi energy, for a trapped two-components Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. {bf 99}, 233201 (2007)]. In particular we find that $xi=0.455$ and $lambda=0.13$ give the best fit of the DMC data with an even number $N$ of particles. We also study the odd-even splitting $gamma N^{1/9} hbar omega$ of the ground-state energy for the unitary gas in a harmonic trap of frequency $omega$ determining the constant $gamma$. Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.
We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expressions for the dipolar potential of an arbitrary polynomial density profile, thereby reducing the problem of handling non-local dipolar interactions to the solution of algebraic equations. We comprehensively map out the static solutions and excitation modes, including non-cylindrically symmetric traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable condensate. The dynamical stability of the excitation modes gives insight into the onset of collapse of a dipolar BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode, although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of fragmented BEC in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar to dipolar systems. As part of the supporting material for this paper we provide the computer program used to make the calculations, including a graphical user interface.
M. Zawada
,R. Abdoul
,J. Chwedenczuk
.
(2008)
.
"Free-fall expansion of finite-temperature Bose-Einstein condensed gas in the non Thomas-Fermi regime"
.
Micha{\\l} Zawada
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا