Categorified Noncommutative manifolds


Abstract in English

We construct a noncommutative geometry with generalised `tangent bundle from Fell bundle $C^*$-categories ($E$) beginning by replacing pair groupoid objects (points) with objects in $E$. This provides a categorification of a certain class of real spectral triples where the Dirac operator is constructed from morphisms in a category. Applications for physics include quantisation via the tangent groupoid and new constraints on $D_{mathrm{finite}}$ (the fermion mass matrix).

Download