Do you want to publish a course? Click here

Strong short-range magnetic order in a frustrated FCC lattice and its possible role in the iron structural transformation

72   0   0.0 ( 0 )
 Added by Andrey Katanin
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate magnetic properties of a frustrated Heisenberg antiferromagnet with a face-centered cubic (FCC) lattice and exchange interactions between the nearest- and next-nearest neighbours, J1 and J2. In a collinear phase with the wave vector Q = (pi,pi,pi) the equations of the self-consistent spin-wave theory for the sublattice magnetization and the average short range order parameter are obtained and numerically solved. The dependence of the Neel temperature T_N on the ratio J2/J1 is obtained. It is shown, that at strong enough frustration there is a wide temperature region above T_N with strong short range magnetic order. Application of this result to description of structural phase transition between alpha and gamma-phase of Fe is considered.



rate research

Read More

Oxide double perovskites wherein octahedra formed by both 3d elements and sp-based heavy elements give rise to unconventional magnetic ordering and correlated quantum phenomena crucial for futuristic applications. Here, by carrying out experimental and first principles investigations, we present the electronic structure and magnetic phases of Ba2MnTeO6, where Mn^2+ ions with S = 5/2 spins constitute a perfect triangular lattice. The magnetic susceptibility reveals a large Curie- Weiss temperature -152 K suggesting the presence of strong antiferromagnetic interactions between Mn^2+ moments in the spin lattice. A phase transition at 20 K is revealed by magnetic susceptibility and specific heat which is attributed to the presence of a sizeable inter-plane interactions. Below the transition temperature, the specific heat data show antiferromagnetic magnon excitations with a gap of 1.4 K. Furthermore, muon spin-relaxation reveals the presence of static internal fields in the ordered state and provides strong evidence of short-range spin correlations for T > TN. The DFT+U calculations and spin-dimer analysis infer that Heisenberg interactions govern the inter and intra-layer spin-frustrations in this perovskite. The inter and intra-layer exchange interactions are of comparable strengths (J1 = 4.6 K, J2 = 0.92 J1). However, a weak third nearest-neighbor ferromagnetic inter-layer interaction exists (J3=-0.04 J1) due to double-exchange interaction via the linear path Mn-O-Te-O-Mn. The combined effect of J2 and J3 interactions stabilizes a three dimensional long-range magnetic ordering in this frustrated magnet.
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the N{e}el temperature $T_N$ = 360(1) K. Below $T_N$ the critical exponent describing the magnetic order parameter is $beta$ = 0.33$-$0.35, consistent with a three dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to $T_{SRO}$ = 650(10) K. The magnetic susceptibility shows a weak anomaly at $T_{SRO}$ and no anomaly at $T_N$. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above $T_N$ nearly two- dimensional, short-range magnetic order is present with a correlation length of 9.3(3) {AA} within the Mn layers at 400 K. The inelastic scattering data reveal a spin-gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasi-elastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above $T_N$ is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.
We present initial Raman spectroscopy experiments on exfoliated flakes of $alpha$-RuCl$_3$, from tens of nm thick down to single layers. Besides unexpectedly finding this material to be air stable, in the thinnest layers we observe the appearance with decreasing temperature of a symmetry-forbidden mode in crossed polarization, along with an anomalous broadening of a mode at 164 cm$^{-1}$ that is known to couple to a continuum of magnetic excitations. This may be due to an enhancement of magnetic fluctuations and evidence for a distorted honeycomb lattice in single- and bi-layer samples.
A single crystal of the Co2+ based pyrochlore NaCaCo2F7 was studied by inelastic neutron scattering. This frustrated magnet with quenched exchange disorder remains in a strongly correlated paramagnetic state down to one 60th of the Curie-Weiss temperature. Below T_f = 2.4 K, diffuse elastic scattering develops and comprises 30 +/- 10% of the total magnetic scattering, as expected for J_{eff} = 1/2 moments frozen on a time scale that exceeds hbar/delta E=3.8 ps. The diffuse scattering is consistent with short range XY antiferromagnetism with a correlation length of 16 AA. The momentum (Q) dependence of the inelastic intensity indicates relaxing XY-like antiferromagnetic clusters at energies below ~ 5.5 meV, and collinear antiferromagnetic fluctuations above this energy. The relevant XY configurations form a continuous manifold of symmetry-related states. Contrary to well-known models that produce this continuous manifold, order-by-disorder does not select an ordered state in NaCaCo2F7 despite evidence for weak (~12 %) exchange disorder. Instead, NaCaCo2F7 freezes into short range ordered clusters that span this manifold.
Magnetic frustration in metals is scarce and hard to pinpoint, but exciting due to the possibility of the emergence of fascinating novel phases. The cubic intermetallic compound HoInCu$_4$ with all holmium atoms on an fcc lattice, exhibits partial magnetic frustration, yielding a ground state where half of the Ho moments remain without long-range order, as evidenced by our neutron scattering experiments. The substitution of In with Cd results in HoCdCu$_4$ in a full breakdown of magnetic frustration. Consequently we found a fully ordered magnetic structure in our neutron diffraction experiments. These findings are in agreement with the local energy scales and crystal electric field excitations, which we determined from specific heat and inelastic neutron scattering data. The electronic density of states for the itinerant bands acts as tuning parameter for the ratio between nearest-neighbor and next-nearest-neighbor interactions and thus for magnetic frustration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا