Do you want to publish a course? Click here

The Origin of the 24-micron Excess in Red Galaxies

309   0   0.0 ( 0 )
 Added by John Moustakas
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations with the Spitzer Space Telescope have revealed a population of red-sequence galaxies with a significant excess in their 24-micron emission compared to what is expected from an old stellar population. We identify 900 red galaxies with 0.15<z<0.3 from the AGN and Galaxy Evolution Survey (AGES) selected from the NOAO Deep Wide-Field Survey Bootes field. Using Spitzer/MIPS, we classify 89 (~10%) with 24-micron infrared excess (f24>0.3 mJy). We determine the prevalence of AGN and star-formation activity in all the AGES galaxies using optical line diagnostics and mid-IR color-color criteria. Using the IRAC color-color diagram from the IRAC Shallow Survey, we find that 64% of the 24-micron excess red galaxies are likely to have strong PAH emission features in the 8-micron IRAC band. This fraction is significantly larger than the 5% of red galaxies with f24<0.3 mJy that are estimated to have strong PAH emission, suggesting that the infrared emission is largely due to star-formation processes. Only 15% of the 24-micron excess red galaxies have optical line diagnostics characteristic of star-formation (64% are classified as AGN and 21% are unclassifiable). The difference between the optical and infrared results suggest that both AGN and star-formation activity is occurring simultaneously in many of the 24-micron excess red galaxies. These results should serve as a warning to studies that exclusively use optical line diagnostics to determine the dominant emission mechanism in the infrared and other bands. We find that ~40% of the 24-micron excess red galaxies are edge-on spiral galaxies with high optical extinctions. The remaining sources are likely to be red galaxies whose 24-micron emission comes from a combination of obscured AGN and star-formation activity.



rate research

Read More

Spitzer-MIPS 24 micron and ground-based observations of the rich galaxy cluster Abell 851 at z=0.41 are used to derive star formation rates from the mid-IR 24 micron and from [O II] 3727 emission. Many cluster galaxies have SFR(24 um)/SFR([O II]) >> 1, indicative of star formation highly obscured by dust. We focus on the substantial minority of A851 cluster members where strong Balmer absorption points to a starburst on a 10^{8-9} year timescale. As is typical, A851 galaxies with strong Balmer absorption occur in two types: with optical emission (starforming), and without (post-starburst). Our principal result is the former, so-called e(a) galaxies, are mostly detected (9 out of 12) at 24 um -- for these we find typically SFR(24 um)/SFR([O II]) ~ 4. Strong Balmer absorption and high values of SFR(24 um)/SFR([O II]) both indicate moderately active starbursts and support the picture that e(a) galaxies are the active starbursts that feed the post-starburst population. While 24 um detections are frequent with Balmer-strong objects (even 6 out of 18 of the supposedly post-starburst galaxies are detected) only 2 out of 7 of the continuously starforming `e(c) galaxies (with weak Balmer absorption) are detected -- for them, SFR(24 um)/SFR([O II]) ~ 1. Their optical spectra resemble present-epoch spirals that dominate todays universe; we strengthen this association by that SFR(24 um)/SFR([O II]) ~ 1 is the norm today. That is, not just the amount of star formation, but its mode, has evolved strongly from z ~ 0.4 to the present. By fitting spectrophotometric models we measure the strength and duration of the bursts to quantify the evolutionary sequence from active- to post-starburst, and to harden the evidence that moderately active starbursts are the defining feature of starforming cluster galaxies at z ~ 0.4.
67 - X. Z. Zheng 2005
We stack Spitzer 24 micron images for ~7000 galaxies with 0.1<z<1 in the Chandra Deep Field South to probe the thermal dust emission in low-luminosity galaxies over this redshift range. Through stacking, we can detect mean 24 micron fluxes that are more than an order of magnitude below the individual detection limit. We find that the correlations for low and moderate luminosity galaxies between the average L_IR/L_UV and rest-frame B-band luminosity, and between the star formation rate (SFR) and L_IR/L_UV, are similar to those in the local Universe. This verifies that oft-used assumption in deep UV/optical surveys that the dust obscuration-SFR relation for galaxies with SFR < 20 solar mass per year varies little with epoch. We have used this relation to derive the cosmic IR luminosity density from z=1 to z=0.1. The results also demonstrate directly that little of the bolometric luminosity of the galaxy population arises from the faint end of the luminosity function, indicating a relatively flat faint-end slope of the IR luminosity function with a power law index of 1.2+-0.3.
We investigate the close environment of 203 Spitzer 24 micron-selected sources at 0.6<z<1.0 using zCOSMOS-bright redshifts and spectra of I<22.5 AB mag galaxies, over 1.5 sq. deg. of the COSMOS field. We quantify the degree of passivity of the LIRG and ULIRG environments by analysing the fraction of close neighbours with Dn(4000)>1.4. We find that LIRGs at 0.6<z<0.8 live in more passive environments than those of other optical galaxies that have the same stellar mass distribution. Instead, ULIRGs inhabit more active regions (e.g. LIRGs and ULIRGs at 0.6<z<0.8 have, respectively, (42.0 +/- 4.9)% and (24.5 +/- 5.9)% of neighbours with Dn (4000)>1.4 within 1 Mpc and +/- 500 km/s). The contrast between the activities of the close environments of LIRGs and ULIRGs appears especially enhanced in the COSMOS field density peak at z~0.67, because LIRGs on this peak have a larger fraction of passive neighbours, while ULIRGs have as active close environments as those outside the large-scale structure. The differential environmental activity is related to the differences in the distributions of stellar mass ratios between LIRGs/ULIRGs and their close neighbours, as well as in the general local density fields. At 0.8<z<1.0, instead, we find no differences in the environment densities of ULIRGs and other similarly massive galaxies, in spite of the differential activities. We discuss a possible scenario to explain these findings.
We present surface photometry of a sample of 52 galaxies from the GALEX and 2MASS data archives, these include 32 normal elliptical galaxies, 10 ellipticals with weak Liner or other nuclear activity, and 10 star forming ellipticals or early-type spirals. We examine the spatial distribution of the Far Ultra-Violet excess in these galaxies, and its correlation with dynamical and stellar population properties of the galaxies. From aperture photometry we find that all galaxies except for recent major remnants and galaxies with ongoing star formation show a positive gradient in the (FUV-NUV) colour determined from the GALEX images. The logarithmic gradient does not correlate with any stellar population parameter, but it does correlate with the central velocity dispersion. The strength of the excess on the other hand, correlates with both [alpha/Fe] and [Z/H], but more strongly with the former. We derive models of the underlying stellar population from the 2MASS H-band images, and the residual of the image from this model reveals a map of the centrally concentrated FUV excess. We examine a possible hypothesis for generating the FUV excess and the radial gradient in its strength, involving a helium abundance gradient set up early in the formation process of the galaxies. If this hypothesis is correct, the persistence of the gradients to the present day places a strong limit on the importance of dry mergers in the formation of ellipticals.
435 - Casey Papovich 2004
Galaxy source counts in the infrared provide strong constraints on the evolution of the bolometric energy output from distant galaxy populations. We present the results from deep 24 micron imaging from Spitzer surveys, which include approximately 50,000 sources to an 80% completeness of 60 uJy. The 24 micron counts rapidly rise at near-Euclidean rates down to 5 mJy, increase with a super-Euclidean rate between 0.4 - 4 mJy, and converge below 0.3 mJy. The 24 micron counts exceed expectations from non-evolving models by a factor >10 at 0.1 mJy. The peak in the differential number counts corresponds to a population of faint sources that is not expected from predictions based on 15 micron counts from ISO. We argue that this implies the existence of a previously undetected population of infrared-luminous galaxies at z ~ 1-3. Integrating the counts to 60 uJy, we derive a lower limit on the 24 micron background intensity of 1.9 +/- 0.6 nW m-2 sr-1 of which the majority (~ 60%) stems from sources fainter than 0.4 mJy. Extrapolating to fainter flux densities, sources below 60 uJy contribute 0.8 {+0.9/-0.4} nW m-2 sr-1 to the background, which provides an estimate of the total 24 micron background of 2.7 {+1.1/-0.7} nW m-2 sr-1.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا