Do you want to publish a course? Click here

Parts and Wholes. An Inquiry into Quantum and Classical Correlations

495   0   0.0 ( 0 )
 Added by Michael Seevinck
 Publication date 2009
  fields Physics
and research's language is English
 Authors M.P. Seevinck




Ask ChatGPT about the research

** The primary topic of this dissertation is the study of the relationships between parts and wholes as described by particular physical theories, namely generalized probability theories in a quasi-classical physics framework and non-relativistic quantum theory. ** A large part of this dissertation is devoted to understanding different aspects of four different kinds of correlations: local, partially-local, no-signaling and quantum mechanical correlations. Novel characteristics of these correlations have been used to study how they are related and how they can be discerned via Bell-type inequalities that give non-trivial bounds on the strength of the correlations. ** The study of quantum correlations has also prompted us to study a) the multi-partite qubit state space with respect to its entanglement and separability characteristics, and b) the differing strength of the correlations in separable and entangled qubit states. Results include a novel classification of multipartite (partial) separability and entanglement, strong constraints on the monogamy of entanglement and of non-local correlations, and many new entanglement detection criteria that are directly experimentally accessible. ** Because of the generality of the investigation these results also have strong foundational as well as philosophical repercussions for the different sorts of physical theories as a whole; notably for the viability of hidden variable theories for quantum mechanics, for the possibility of doing experimental metaphysics, for the question of holism in physical theories, and for the classical vs. quantum dichotomy.



rate research

Read More

A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage. We show that, in this scenario, the quantum discord quantifies the advantage of the quantum protocol over the corresponding classical one for any classical-quantum state.
A unifying principle explaining the numerical bounds of quantum correlations remains elusive despite the efforts devoted to identifying it. Here we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the quantum bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.
We show that genuine multiparty quantum correlations can exist on its own, without a supporting background of genuine multiparty classical correlations, even in macroscopic systems. Such possibilities can have important implications in the physics of quantum information and phase transitions.
We introduce and analyse the problem of encoding classical information into different resources of a quantum state. More precisely, we consider a general class of communication scenarios characterised by encoding operations that commute with a unique resource destroying map and leave free states invariant. Our motivating example is given by encoding information into coherences of a quantum system with respect to a fixed basis (with unitaries diagonal in that basis as encodings and the decoherence channel as a resource destroying map), but the generality of the framework allows us to explore applications ranging from super-dense coding to thermodynamics. For any state, we find that the number of messages that can be encoded into it using such operations in a one-shot scenario is upper-bounded in terms of the information spectrum relative entropy between the given state and its version with erased resources. Furthermore, if the resource destroying map is a twirling channel over some unitary group, we find matching one-shot lower-bounds as well. In the asymptotic setting where we encode into many copies of the resource state, our bounds yield an operational interpretation of resource monotones such as the relative entropy of coherence and its corresponding relative entropy variance.
The quantum superposition principle has been extensively utilized in the quantum mechanical description of the bonding phenomenon. It explains the emergence of delocalized molecular orbitals and provides a recipe for the construction of near-exact electronic wavefunctions. On the other hand, its existence in composite systems may give rise to nonclassical correlations that are regarded now as a resource in quantum technologies. Here, we approach the electronic ground states of three prototypical molecules from the point of view of fermionic information theory. For the first time in the literature, we properly decompose the pairwise orbital correlations into their classical and quantum parts in the presence of superselection rules. We observe that quantum orbital correlations can be stronger than classical orbital correlations though not often. Also, quantum orbital correlations can survive even in the absence of orbital entanglement depending on the symmetries of the constituent orbitals. Finally, we demonstrate that orbital entanglement would be underestimated if the orbital density matrices were treated as qubit states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا