Do you want to publish a course? Click here

Parity violation constraints using 2006-2007 QUaD CMB polarization spectra

276   0   0.0 ( 0 )
 Added by Edward Wu
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiments second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of CMB photons. We measure the rotation angle due to such a possible cosmological birefringence to be 0.55 deg. +/- 0.82 deg. (random) +/- 0.5 deg. (systematic) using QUaDs 100 and 150 GHz TB and EB spectra over the multipole range 200 < l < 2000, consistent with null, and constrain Lorentz violating interactions to < 2^-43 GeV (68% confidence limit). This is the best constraint to date on electrodynamic parity violation on cosmological scales.



rate research

Read More

QUaD is a bolometric CMB polarimeter sited at the South Pole, operating at frequencies of 100 and 150 GHz. In this paper we report preliminary results from the first season of operation (austral winter 2005). All six CMB power spectra are presented derived as cross spectra between the 100 and 150 GHz maps using 67 days of observation in a low foreground region of approximately 60 square degrees. This data is a small fraction of the data acquired to date. The measured spectra are consistent with the LCDM cosmological model. We perform jackknife tests which indicate that the observed signal has negligible contamination from instrumental systematics. In addition by using a frequency jackknife we find no evidence for foreground contamination.
We report results from the second and third seasons of observation with the QUaD experiment. Angular power spectra of the Cosmic Microwave Background are derived for both temperature and polarization at both 100 GHz and 150 GHz, and as cross frequenc y spectra. All spectra are subjected to an extensive set of jackknife tests to probe for possible systematic contamination. For the implemented data cuts and processing technique such contamination is undetectable. We analyze the difference map formed between the 100 and 150 GHz bands and find no evidence of foreground contamination in polarization. The spectra are then combined to form a single set of results which are shown to be consistent with the prevailing LCDM model. The sensitivity of the polarization results is considerably better than that of any previous experiment -- for the first time multiple acoustic peaks are detected in the E-mode power spectrum at high significance.
In this paper we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the E-mode polarization spectrum with high significance. Although QUaD-only parameter constraints are not competitive with previous results for the standard 6-parameter LCDM cosmology, they do allow meaningful polarization-only parameter analyses for the first time. In a standard 6-parameter LCDM analysis we find the QUaD TT power spectrum to be in good agreement with previous results. However, the QUaD polarization data shows some tension with LCDM. The origin of this 1 to 2 sigma tension remains unclear, and may point to new physics, residual systematics or simple random chance. We also combine QUaD with the five-year WMAP data set and the SDSS Luminous Red Galaxies 4th data release power spectrum, and extend our analysis to constrain individual isocurvature mode fractions, constraining cold dark matter density, alpha(cdmi)<0.11 (95 % CL), neutrino density, alpha(ndi)<0.26 (95 % CL), and neutrino velocity, alpha(nvi)<0.23 (95 % CL), modes. Our analysis sets a benchmark for future polarization experiments.
Parity violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, impacts the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing $T$--$B$ and $E$--$B$ correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle $alpha$, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for $alpha$ that are in agreement within statistical uncertainties and very stable against several consistency tests. Considering the $T$--$B$ and $E$--$B$ information jointly, we find $alpha = 0.31^{circ} pm 0.05^{circ} , ({rm stat.}), pm 0.28^{circ} , ({rm syst.})$ from the harmonic analysis and $alpha = 0.35^{circ} pm 0.05^{circ} , ({rm stat.}), pm 0.28^{circ} , ({rm syst.})$ from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Plancks polarization-sensitive bolometers.
120 - Carlo R. Contaldi 2015
Correlations of polarization components in the coordinate frame are a natural basis for searches of parity-violating modes in the Cosmic Microwave Background (CMB). This fact can be exploited to build estimators of parity-violating modes that are {sl local} and robust with respect to partial-sky coverage or inhomogeneous weighting. As an example application of a method based on these ideas we develop a peak stacking tool that isolates the signature of parity-violating modes. We apply the tool to {sl Planck} maps and obtain a constraint on the monopole of the polarization rotation angle $alpha < 0.72$ degrees at $95%$ We also demonstrate how the tool can be used as a local method for reconstructing maps of direction dependent rotation $alpha(hat {n})$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا