Dual electronic states in thermoelectric cobalt oxide


Abstract in English

We investigate the low temperature magnetic field dependence of the resistivity in the thermoelectric misfit cobalt oxide [Bi1.7Ca2O4]0.59CoO2 from 60 K down to 3 K. The scaling of the negative magnetoresistance demonstrates a spin dependent transport mechanism due to a strong Hunds coupling. The inferred microscopic description implies dual electronic states which explain the coexistence between localized and itinerant electrons both contributing to the thermopower. By shedding a new light on the electronic states which lead to a high thermopower, this result likely provides a new potential way to optimize the thermoelectric properties.

Download