Do you want to publish a course? Click here

The environments of starburst and post-starburst galaxies at z=0.4-0.8

238   0   0.0 ( 0 )
 Added by Bianca Poggianti dr
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Post-starburst (E+A or k+a) spectra, characterized by their exceptionally strong Balmer lines in absorption and the lack of emission lines, belong to galaxies in which the star formation activity ended abruptly sometime during the past Gyr. We perform a spectral analysis of galaxies in clusters, groups, poor groups and the field at z=0.4-0.8 based on the ESO Distant Cluster Survey. The incidence of k+as at these redshifts depends strongly on environment. K+as reside preferentially in clusters and, unexpectedly, in a subset of the sigma = 200-400 km/s groups, those that have a low fraction of [OII] emitters. In these environments, 20-30% of the recently star-forming galaxies have had their star formation activity recently truncated. In contrast, there are proportionally fewer k+as in the field, the poor groups and groups with a high [OII] fraction. The incidence of k+a galaxies correlates with the cluster velocity dispersion: more massive clusters have higher proportions of k+as. Spectra of dusty starburst candidates, with strong Balmer absorption and emission lines, present a very different environmental dependence from k+as. They are numerous in all environments at z=0.4-0.8, but they are especially numerous in all types of groups, favoring the hypothesis of triggering by a merger. Our observations are consistent with previous suggestions that cluster k+a galaxies are observed in a transition phase as massive S0 and Sa galaxies, evolving from star-forming later types to passively evolving early-type galaxies. The correlation between k+a fraction and cluster sigma supports the hypothesis that k+a galaxies in clusters originate from processes related to the intracluster medium, while several possibilities are discussed for the origin of the k+a frequency in low-[OII] groups.(abr.)



rate research

Read More

Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with $0.01<z<0.05$, $log(mbox{M}_{star}/mbox{M}_{odot})>9.5$ and projected axis ratio $b/a>0.32$. We explore their structural properties, environments, emission lines and star formation histories, and compare them to control samples of star-forming and quiescent galaxies, and simulated galaxy mergers. Excluding contaminants, in which the strong Balmer lines are most likely caused by dust-star geometry, we find evidence for three different pathways through the post-starburst phase, with most events occurring in intermediate-density environments: (1) a significant disruptive event, such as a gas-rich major merger, causing a starburst and growth of a spheroidal component, followed by quenching of the star formation (70% of post-starburst galaxies at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$ and 60% at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$); (2) at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$, stochastic star formation in blue-sequence galaxies, causing a weak burst and subsequent return to the blue sequence (30%); (3) at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$, cyclic evolution of quiescent galaxies which gradually move towards the high-mass end of the red sequence through weak starbursts, possibly as a result of a merger with a smaller gas-rich companion (40%). Our analysis suggests that AGN are `on for $50%$ of the duration of the post-starburst phase, meaning that traditional samples of post-starburst galaxies with strict emission line cuts will be at least $50%$ incomplete due to the exclusion of narrow-line AGN.
We use deep, spatially resolved spectroscopy from the LEGA-C Survey to study radial variations in the stellar population of 17 spectroscopically-selected post-starburst (PSB) galaxies. We use spectral fitting to measure two Lick indices, $H{delta}_A$ and $Fe4383$, and find that, on average, PSB galaxies have radially decreasing $H{delta}_A$ and increasing $Fe4383$ profiles. In contrast, a control sample of quiescent, non-PSB galaxies in the same mass range shows outwardly increasing $H{delta}_A$ and decreasing $Fe4383$. The observed gradients are weak ($approx-0.2$ r{A}/$R_e$), mainly due to seeing convolution. A two-SSP model suggests intrinsic gradients are as strong as observed in local PSB galaxies ($approx -0.8$ r{A}$/R_e$). We interpret these results in terms of inside-out growth (for the bulk of the quiescent population) vs star formation occurring last in the centre (for PSB galaxies). At $zapprox0.8$, central starbursts are often the result of gas-rich mergers, as evidenced by the high fraction of PSB galaxies with disturbed morphologies and tidal features (40%). Our results provide additional evidence for multiple paths to quiescence: a standard path, associated with inside-out disc formation and with gradually decreasing star-formation activity, without fundamental structural transformation, and a fast path, associated with centrally-concentrated starbursts, leaving an inverse age gradient and smaller half-light radius.
(abridged) There are good observational reasons to believe that the progenitors of red galaxies have undergone starbursts, followed by a post-starburst phase. We investigate the environments of post-starburst galaxies by measuring textsl{(1)} number densities in $8 h^{-1} mathrm{Mpc}$ radius comoving spheres, textsl{(2)} transverse distances to nearest Virgo-like galaxy clusters, and textsl{(3)} transverse distances to nearest luminous-galaxy neighbors. We compare the post-starburst galaxies to currently star-forming galaxies identified solely by A-star excess or $Halpha$ emission. We find that post-starburst galaxies are in the same kinds of environments as star-forming galaxies; this is our ``null hypothesis. More importantly, we find that at each value of the A-star excess, the star-forming and post-starburst galaxies lie in very similar distributions of environment. The only deviations from our null hypothesis are barely significant: a slight deficit of post-starburst galaxies (relative to the star-forming population) in very low-density regions, a small excess inside the virial radii of clusters, and a slight excess with nearby neighbors. None of these effects is strong enough to make the post-starburst galaxies a high-density phenomenon, or to argue that the starburst events are primarily triggered by external tidal impulses (e.g., from close passages of massive galaxies). The small excess inside cluster virial radii suggests that some post-starbursts are triggered by interactions with the intracluster medium, but this represents a very small fraction of all post-starburst galaxies.
142 - David T. Maltby 2019
We investigate the prevalence of galactic-scale outflows in post-starburst (PSB) galaxies at high redshift ($1 < z < 1.4$), using the deep optical spectra available in the UKIDSS Ultra Deep Survey (UDS). We use a sample of $sim40$ spectroscopically confirmed PSBs, recently identified in the UDS field, and perform a stacking analysis in order to analyse the structure of strong interstellar absorption features such as Mg ii ($lambda2800$ Ang.). We find that for massive ($M_* > 10^{10}rm,M_{odot}$) PSBs at $z > 1$, there is clear evidence for a strong blue-shifted component to the Mg ii absorption feature, indicative of high-velocity outflows ($v_{rm out}sim1150pm160rm,km,s^{-1}$) in the interstellar medium. We conclude that such outflows are typical in massive PSBs at this epoch, and potentially represent the residual signature of a feedback process that quenched these galaxies. Using full spectral fitting, we also obtain a typical stellar velocity dispersion $sigma_*$ for these PSBs of $sim200rm,km,s^{-1}$, which confirms they are intrinsically massive in nature (dynamical mass $M_{rm d}sim10^{11}rm,M_{odot}$). Given that these high-$z$ PSBs are also exceptionally compact ($r_{rm e}sim1$--$2rm,kpc$) and spheroidal (Sersic index $nsim3$), we propose that the outflowing winds may have been launched during a recent compaction event (e.g. major merger or disc collapse) that triggered either a centralised starburst or active galactic nuclei (AGN) activity. Finally, we find no evidence for AGN signatures in the optical spectra of these PSBs, suggesting they were either quenched by stellar feedback from the starburst itself, or that if AGN feedback is responsible, the AGN episode that triggered quenching does not linger into the post-starburst phase.
We present the star formation histories of 39 galaxies with high quality rest-frame optical spectra at 0.5<z<1.3 selected to have strong Balmer absorption lines and/or Balmer break, and compare to a sample of spectroscopically selected quiescent galaxies at the same redshift. Photometric selection identifies a majority of objects that have clear evidence for a recent short-lived burst of star formation within the last 1.5 Gyr, i.e. post-starburst galaxies, however we show that good quality continuum spectra are required to obtain physical parameters such as burst mass fraction and burst age. Dust attenuation appears to be the primary cause for misidentification of post-starburst galaxies, leading to contamination in spectroscopic samples where only the [OII] emission line is available, as well as a small fraction of objects lost from photometric samples. The 31 confirmed post-starburst galaxies have formed 40-90% of their stellar mass in the last 1-1.5 Gyr. We use the derived star formation histories to find that the post-starburst galaxies are visible photometrically for 0.5-1 Gyr. This allows us to update a previous analysis to suggest that 25-50% of the growth of the red sequence at z~1 could be caused by a starburst followed by rapid quenching. We use the inferred maximum historical star formation rates of several 100-1000 Msun/yr and updated visibility times to confirm that sub-mm galaxies are likely progenitors of post-starburst galaxies. The short quenching timescales of 100-200 Myr are consistent with cosmological hydrodynamic models in which rapid quenching is caused by the mechanical expulsion of gas due to an AGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا