Do you want to publish a course? Click here

Testing bibliometric indicators by their prediction of scientists promotions

106   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English
 Authors Pablo Jensen




Ask ChatGPT about the research

We have developed a method to obtain robust quantitative bibliometric indicators for several thousand scientists. This allows us to study the dependence of bibliometric indicators (such as number of publications, number of citations, Hirsch index...) on the age, position, etc. of CNRS scientists. Our data suggests that the normalized h index (h divided by the career length) is not constant for scientists with the same productivity but differents ages. We also compare the predictions of several bibliometric indicators on the promotions of about 600 CNRS researchers. Contrary to previous publications, our study encompasses most disciplines, and shows that no single indicator is the best predictor for all disciplines. Overall, however, the Hirsch index h provides the least bad correlations, followed by the number of papers published. It is important to realize however that even h is able to recover only half of the actual promotions. The number of citations or the mean number of citations per paper are definitely not good predictors of promotion.



rate research

Read More

We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.
We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.
235 - Eric Burns , Wade Fisher 2011
Asymptotic formulae for likelihood-based tests of new physics presents a mathematical formalism for a new approximation for hypothesis testing in high energy physics. The approximations are designed to greatly reduce the computational burden for such problems. We seek to test the conditions under which the approximations described remain valid. To do so, we perform parallel calculations for a range of scenarios and compare the full calculation to the approximations to determine the limits and robustness of the approximation. We compare this approximation against values calculated with the Collie framework, which for our analysis we assume produces true values.
Fundamentally related to the UV divergence problem in Physics, conventional wisdom in seismology is that the smallest earthquakes, which are numerous and often go undetected, dominate the triggering of major earthquakes, making the prediction of the latter difficult if not inherently impossible. By developing a rigorous validation procedure, we show that, in fact, large earthquakes (above magnitude 6.3 in California) are preferentially triggered by large events. Because of the magnitude correlations intrinsic in the validated model, we further rationalize the existence of earthquake doublets. These findings have far-reaching implications for short-term and medium-term seismic risk assessment, as well as for the development of a deeper theory without UV cut-off that is locally self-similar.
149 - Eve Armstrong 2019
Despite a previous description of his state as a stable fixed point, just past midnight this morning Mr. Boddy was murdered again. In fact, over 70 years Mr. Boddy has been reported murdered $10^6$ times, while there exist no documented attempts at intervention. Using variational data assimilation, we train a model of Mr. Boddys dynamics on the time series of observed murders, to forecast future murders. The parameters to be estimated include instrument, location, and murderer. We find that a successful estimation requires three additional elements. First, to minimize the effects of selection bias, generous ranges are placed on parameter searches, permitting values such as the Cliff, the Poisoned Apple, and the Wife. Second, motive, which was not considered relevant to previous murders, is added as a parameter. Third, Mr. Boddys little-known asthmatic condition is considered as an alternative cause of death. Following this mornings event, the next local murder is forecast for 17:19:03 EDT this afternoon, with a standard deviation of seven hours, at The Kitchen at 4330 Katonah Avenue, Bronx, NY, 10470, with either the Lead Pipe or the Lead Bust of Washington Irving. The motive is: Case of Mistaken Identity, and there was no convergence upon a murderer. Testing of the procedures predictive power will involve catching the D train to 205th Street and a few transfers over to Katonah Avenue, and sitting around waiting with our eyes peeled. We discuss the problem of identifying a global solution - that is, the best reason for murder on a landscape riddled with pretty-decent reasons. We also discuss the procedures assumption of Gaussian-distributed errors, which will under-predict rare events. This under-representation of highly improbable events may be offset by the fact that the training data, after all, consists of multiple murders of a single person.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا