PAMELA data and leptonically decaying dark matter


Abstract in English

Recently PAMELA released their first results on the positron and antiproton ratios. Stimulated by the new data, we studied the cosmic ray propagation models and calculated the secondary positron and antiproton spectra. The low energy positron ratio can be consistent with data in the convection propagation model. Above $sim 10$ GeV PAMELA data shows a clear excess on the positron ratio. However, the secondary antiproton is roughly consistent with data. The positron excess may be a direct evidence of dark matter annihilation or decay. We compare the positron and anti-proton spectra with data by assuming dark matter annihilates or decays into different final states. The PAMELA data actually excludes quark pairs being the main final states, disfavors gauge boson final states. Only in the case of leptonic final states the positron and anti-proton spectra can be explained simultaneously. We also compare the decaying and annihilating dark matter scenarios to account for the PAMELA results and prefer to the decaying dark matter. Finally we consider a decaying neutralino dark matter model in the frame of supersymmetry with R-parity violation. The PAMELA data is well fitted with neutralino mass $600sim 2000$ GeV and life time $sim 10^{26}$ seconds. We also demonstrate that neutralino with mass around 2TeV can fit PAMELA and ATIC data simultaneously.

Download