Quantum symmetries and quantum isometries of compact metric spaces


Abstract in English

We prove that a compact quantum group with faithful Haar state which has a faithful action on a compact space must be a Kac algebra, with bounded antipode and the square of the antipode being identity. The main tool in proving this is the theory of ergodic quantum group action on $C^*$ algebras. Using the above fact, we also formulate a definition of isometric action of a compact quantum group on a compact metric space, generalizing the definition given by Banica for finite metric spaces, and prove for certain special class of metric spaces the existence of the universal object in the category of those compact quantum groups which act isometrically and are `bigger than the classical isometry group.

Download