No Arabic abstract
System identification refers to estimation of process parameters and is a necessity in control theory. Physical systems usually have varying parameters. For such processes, accurate identification is particularly important. Online identification schemes are also needed for designing adaptive controllers. Real processes are usually of fractional order as opposed to the ideal integral order models. In this paper, we propose a simple and elegant scheme of estimating the parameters for such a fractional order process. A population of process models is generated and updated by particle swarm optimization (PSO) technique, the fitness function being the sum of squared deviations from the actual set of observations. Results show that the proposed scheme offers a high degree of accuracy even when the observations are corrupted to a significant degree. Additional schemes to improve the accuracy still further are also proposed and analyzed.
This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed. This method employs fractional calculus theory to find equations relating the parameters that are to be estimated, and then estimates the process parameters after solving the simultaneous equations. The said simultaneous equations are generated and updated using particle swarm optimization (PSO) technique, the fitness function being the sum of squared deviations from the actual set of observations. The data used for the calculations are intentionally corrupted to simulate real-life conditions. Results show that the proposed scheme offers a very high degree of accuracy even for erroneous data.
This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed. This method employs fractional calculus theory to find equations relating the parameters that are to be estimated, and then estimates the process parameters after solving the simultaneous equations. The data used for the calculations are intentionally corrupted to simulate real-life conditions. Results show that the proposed scheme offers a very high degree of accuracy even for erroneous data.
Mobile IPv6 will be an integral part of the next generation Internet protocol. The importance of mobility in the Internet gets keep on increasing. Current specification of Mobile IPv6 does not provide proper support for reliability in the mobile network and there are other problems associated with it. In this paper, we propose Virtual Private Network (VPN) based Home Agent Reliability Protocol (VHAHA) as a complete system architecture and extension to Mobile IPv6 that supports reliability and offers solutions to the security problems that are found in Mobile IP registration part. The key features of this protocol over other protocols are: better survivability, transparent failure detection and recovery, reduced complexity of the system and workload, secure data transfer and improved overall performance.
Recently, Hastings & Haah introduced a quantum memory defined on the honeycomb lattice. Remarkably, this honeycomb code assembles weight-six parity checks using only two-local measurements. The sparse connectivity and two-local measurements are desirable features for certain hardware, while the weight-six parity checks enable robust performance in the circuit model. In this work, we quantify the robustness of logical qubits preserved by the honeycomb code using a correlated minimum-weight perfect-matching decoder. Using Monte Carlo sampling, we estimate the honeycomb codes threshold in different error models, and project how efficiently it can reach the teraquop regime where trillions of quantum logical operations can be executed reliably. We perform the same estimates for the rotated surface code, and find a threshold of $0.2%-0.3%$ for the honeycomb code compared to a threshold of $0.5%-0.7%$ for the surface code in a controlled-not circuit model. In a circuit model with native two-body measurements, the honeycomb code achieves a threshold of $1.5% < p <2.0%$, where $p$ is the collective error rate of the two-body measurement gate - including both measurement and correlated data depolarization error processes. With such gates at a physical error rate of $10^{-3}$, we project that the honeycomb code can reach the teraquop regime with only $600$ physical qubits.
This study explores how a swarm of aerial mobile vehicles can provide network connectivity and meet the stringent requirements of public protection and disaster relief operations. In this context, we design a physics-based controlled mobility strategy, which we name the extended Virtual Force Protocol (VFPe), allowing self-propelled nodes, and in particular here unmanned aerial vehicles, to fly autonomously and cooperatively. In this way, ground devices scattered on the operation site may establish communications through the wireless multi-hop communication routes formed by the network of aerial nodes. We further investigate through simulations the behavior of the VFPe protocol, notably focusing on the way node location information is disseminated into the network as well as on the impact of the number of exploration nodes on the overall network performance.