No Arabic abstract
Renormalization group (RG) evolution of the neutrino mass matrix may take the value of the mixing angle $theta_{13}$ very close to zero, or make it vanish. On the other hand, starting from $theta_{13}=0$ at the high scale it may be possible to generate a non-zero $theta_{13}$ radiatively. In the most general scenario with non-vanishing CP violating Dirac and Majorana phases, we explore the evolution in the vicinity of $theta_{13}=0$, in terms of its structure in the complex ${cal U}_{e3}$ plane. This allows us to explain the apparent singularity in the evolution of the Dirac CP phase $delta$ at $theta_{13}=0$. We also introduce a formalism for calculating the RG evolution of neutrino parameters that uses the Jarlskog invariant and naturally avoids this singular behaviour. We find that the parameters need to be extremely fine-tuned in order to get exactly vanishing $theta_{13}$ during evolution. For the class of neutrino mass models with $theta_{13}=0$ at the high scale, we calculate the extent to which RG evolution can generate a nonzero $theta_{13}$, when the low energy effective theory is the standard model or its minimal supersymmetric extension. We find correlated constraints on $theta_{13}$, the lightest neutrino mass $m_0$, the effective Majorana mass $m_{ee}$ measured in the neutrinoless double beta decay, and the supersymmetric parameter $tanbeta$.
We propose an extension of tri-bimaximal mixing to include a non-zero reactor angle $theta_{13}$ while maintaining the tri-bimaximal predictions for the atmospheric angle $theta_{23}=45^o$ and solar angle $theta_{12}=35^o$. We show how such tri-bimaximal-reactor mixing can arise at leading order from the(type I) see-saw mechanism with partially constrained sequential dominance. Partially constrained sequential dominance can be realized in GUT models with a non-Abelian discrete family symmetry, such as $A_4$, spontaneously broken by flavons with a particular vacuum alignment.
The recent T2K, MINOS and Double Chooz oscillation data hint a relatively large $theta_{13}$, which can be accommodated by some general modification of the Tribimaximal/Bimaximal/Democratic mixing matrices. Using such matrices we analyze several Majorana mass matrices with texture one-zero and show whether they satisfy normal or inverted mass hierarchy and phenomenologically viable or not.
In the Higgs Triplet Model and the neutrinophilic Two-Higgs-Doublet Model the observed neutrinos obtain mass from a vacuum expectation value which is much smaller than the vacuum expectation value of the Higgs boson in the Standard Model. Both models contain a singly charged Higgs boson (H^-) whose Yukawa coupling is directly related to the neutrino mass (i.e. a neutrinophilic charged Higgs). The partial decay widths of H^- into a charged lepton and a neutrino (H^- to l^- nu) depend identically on the neutrino masses and mixings in the two models. We quantify the impact of the recent measurement of sin^2(2theta_{13}), which plays a crucial role in determining the magnitude of the branching ratio of H^- to e^- nu for the case of a normal neutrino mass ordering if the lightest neutrino mass m_0 < 10^{-3} eV. We also discuss the sizeable dependence of H^- to mu^- nu and H^- to tau^- nu on sin^2(theta_{23}), which would enable information to be obtained on sin^2(theta_{23}) and the sign of Delta m^2_{31} if these decays are measured. Such information would help neutrino oscillation experiments to determine the CP-violating phase delta.
We present the correlation of low energy CP phases, both Dirac and Majorana, and the lepton asymmetry for the baryon asymmetry in the universe, with a certain class of Yukawa matrices that consist of two right-handed neutrinos and include one texture zero in themselves. For cases in which the amount of the lepton asymmetry $Y_L$ turns out to be proportional to $theta_{13}^2$, we consider the relation between two types of CP phases and the relation of $Y_L$ versus the Jarlskog invariant or the amplitude of neutrinoless double beta decay as $theta_{13}$ varies.
We study the lepton flavor models with the flavor symmetry (Z_N times Z_N times Z_N)rtimes Z_3. Our models predict non-vanishing discrete values of theta_{13} as well as theta_{12} and theta_{23} depending on N. For certain values, our models realize the tri-bimaximal mixing angles with theta_{13}=0. For other values, our models provide with discrete deviation from the tri-bimaximal mixing angles.