On the structure of some moduli spaces of finite flat group schemes


Abstract in English

We consider the moduli space, in the sense of Kisin, of finite flat models of a 2-dimensional representation with values in a finite field of the absolute Galois group of a totally ramified extension of $mathbb{Q}_p$. We determine the connected components of this space and describe its irreducible components. These results prove a modified version of a conjecture of Kisin.

Download