We investigate the dynamics and modulation of ring dark soliton in 2D Bose-Einstein condensates with tunable interaction both analytically and numerically. The analytic solutions of ring dark soliton are derived by using a new transformation method. For shallow ring dark soliton, it is stable when the ring is slightly distorted, while for large deformation of the ring, vortex pairs appear and they demonstrate novel dynamical behaviors: the vortex pairs will transform into dark lumplike solitons and revert to ring dark soliton periodically. Moreover, our results show that the dynamical evolution of the ring dark soliton can be dramatically affected by Feshbach resonance, and the lifetime of the ring dark soliton can be largely extended which offers a useful method for observing the ring dark soliton in future experiments.