Do you want to publish a course? Click here

Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms

200   0   0.0 ( 0 )
 Added by Yijun Feng
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the concept of sub-wavelength imaging through compensated bilayer of anisotropic metamaterials (AMMs), which is an expansion of the perfect lens configuration, we propose two dimensional prism pair structures of compensated AMMs that are capable of manipulating two dimensional sub-wavelength images. We demonstrate that through properly designed symmetric and asymmetric compensated prism pair structures planar image rotation with arbitrary angle, lateral image shift, as well as image magnification could be achieved with sub-wavelength resolution. Both theoretical analysis and full wave electromagnetic simulations have been employed to verify the properties of the proposed prism structures. Utilizing the proposed AMM prisms, flat optical image of objects with sub-wavelength features can be projected and magnified to wavelength scale allowing for further optical processing of the image by conventional optics.



rate research

Read More

The exciting discovery of bi-dimensional systems in condensed matter physics has triggered the search of their photonic analogues. In this letter, we describe a general scheme to reproduce some of the systems ruled by a tight-binding Hamiltonian in a locally resonant metamaterial: by specifically controlling the structure and the composition it is possible to engineer the band structure at will. We numerically and experimentally demonstrate this assertion in the microwave domain by reproducing the band structure of graphene, the most famous example of those 2D-systems, and by accurately extracting the Dirac cones. This is a direct evidence that opting for a crystalline description of those sub-wavelength scaled systems, as opposed to the usual description in terms of effective parameters, makes them a really convenient tabletop platform to investigate the tantalizing challenges that solid-state physics offer.
180 - Y. J. Huang , W. T. Lu , 2008
Exact solutions are obtained for all the modes of wave propagation along an anisotropic cylindrical waveguide. Closed-form expressions for the energy flow on the waveguide are also derived. For extremely anisotropic waveguide where the transverse permittivity is negative while the longitudinal permittivity is positive, only transverse magnetic (TM) and hybrid modes will propagate on the waveguide. At any given frequency the waveguide supports an infinite number of eigenmodes. Among the TM modes, at most only one mode is forward wave. The rest of them are backward waves which can have very large effective index. At a critical radius, the waveguide supports degenerate forward- and backward-wave modes with zero group velocity. These waveguides can be used as phase shifters and filters, and as optical buffers to slow down and trap light.
Hydroelastic surface waves propagate at the surface of water covered by a thin elastic sheet and can be directly measured with accurate space and time resolution. We present an experimental approach using hydroelastic waves that allows us to control waves down to the sub-wavelength scale. We tune the wave dispersion relation by varying locally the properties of the elastic cover and we introduce a local index contrast. This index contrast is independent of the frequency leading to a dispersion-free Snell-Descartes law for hydroelastic waves. We then show experimental evidence of broadband focusing, reflection and refraction of the waves. We also investigate the limits of diffraction through the example of a macroscopic analog to optical nanojets, revealing that any sub-wavelength configuration gives access to new features for surface waves.
High-index dielectrics can confine light into nano-scale leading to enhanced nonlinear response. However, increased momentum in these media can deteriorate the overlap between different harmonics which hinders efficient nonlinear interaction in wavelength-scale resonators in the absence of momentum matching. Here, we propose an alternative approach for light confinement in anisotropic particles. The extra degree of freedom in anisotropic media allows us to control the evanescent waves near the center and the radial momentum away from the center, independently. This can lead to a strong light confinement as well as an excellent field overlap between different harmonics which is ideal for nonlinear wavelength conversion. Controlling the evanescent fields can also help to surpass the constrains on the radiation bandwidth of isotropic dielectric antennas. This can improve the light coupling into these particles, which is crucial for nano-scale nonlinear optics. We estimate the second-harmonic generation efficiency as well as optical parametric oscillation threshold in these particles to show the strong nonlinear response in these particles even away from the center of resonances. Our approach is promising to be realized experimentally and can be used for many applications, such as large-scale parallel sensing and computing.
276 - Yinyue Lin , Yanxia Cui , Fei Ding 2016
The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can also support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we can get rid of this dip if the absorption band edge at long wavelength range is reduced down to 5 micrometer. The parametrical study reflects that the absorption bandwidth is mainly determined by the filling ratio of tungsten as well as the bottom diameter of the nano-cones and the interaction between neighboring nano-cones is quite weak. Our proposal has some potential applications in the areas of solar energy harvesting and thermal emitters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا