We have adapted the anelastic spectral code of Barranco & Marcus (2006) to simulate a turbulent convective layer with the intention of studying the effectiveness of turbulent eddies in dissipating external shear (e.g. tides). We derive the anelastic equations, show the time integration scheme we use to evolve these equations and present the tests we ran to confirm that our code does what we expect. Further we apply a perturbative approach to find an approximate scaling of the effective eddy viscosity with frequency, and find that it is in general agreement with an estimate obtained by applying the same procedure to a realistic simulation of the upper layers of the solar convective zone.