Do you want to publish a course? Click here

A general theory of Finite State Backward Stochastic Difference Equations

182   0   0.0 ( 0 )
 Added by Samuel Cohen
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

By analogy with the theory of Backward Stochastic Differential Equations, we define Backward Stochastic Difference Equations on spaces related to discrete time, finite state processes. This paper considers these processes as constructions in their own right, not as approximations to the continuous case. We establish the existence and uniqueness of solutions under weaker assumptions than are needed in the continuous time setting, and also establish a comparison theorem for these solutions. The conditions of this theorem are shown to approximate those required in the continuous time setting. We also explore the relationship between the driver $F$ and the set of solutions; in particular, we determine under what conditions the driver is uniquely determined by the solution. Applications to the theory of nonlinear expectations are explored, including a representation result.



rate research

Read More

We consider ergodic backward stochastic differential equations in a discrete time setting, where noise is generated by a finite state Markov chain. We show existence and uniqueness of solutions, along with a comparison theorem. To obtain this result, we use a Nummelin splitting argument to obtain ergodicity estimates for a discrete time Markov chain which hold uniformly under suitable perturbations of its transition matrix. We conclude with an application of this theory to a treatment of an ergodic control problem.
115 - Alexandre Popier 2020
In this paper, we study backward stochastic Volterra integral equations introduced in [26, 45] and extend the existence, uniqueness or comparison results for general filtration as in [31] (not only Brownian-Poisson setting). We also consider Lp-data and explore the time regularity of the solution in the It{^o} setting, which is also new in this jump setting.
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftytimes bar{cH^infty}^{BMO}$, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Feffermans inequality plays a crucial role in the development of our theory, which seems to be new. Several new results are consequently obtained. The particular multi-dimensional linear case for SDEs and BSDEs are separately investigated, and the existence and uniqueness of a solution is connected to the property that the elementary solutions-matrix for the associated homogeneous SDE satisfies the reverse Holder inequality for some suitable exponent $pge 1$. Finally, we establish some relations between Kazamakis quadratic critical exponent $b(M)$ of a BMO martingale $M$ and the spectral radius of the solution operator for the $M$-driven SDE, which lead to a characterization of Kazamakis quadratic critical exponent of BMO martingales being infinite.
502 - Shige Peng , Zhe Yang 2009
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.
This paper is devoted to a general solvability of a multi-dimensional backward stochastic differential equation (BSDE) of a diagonally quadratic generator $g(t,y,z)$, by relaxing the assumptions of citet{HuTang2016SPA} on the generator and terminal value. More precisely, the generator $g(t,y,z)$ can have more general growth and continuity in $y$ in the local solution; while in the global solution, the generator $g(t,y,z)$ can have a skew sub-quadratic but in addition strictly and diagonally quadratic growth in the second unknown variable $z$, or the terminal value can be unbounded but the generator $g(t,y,z)$ is diagonally dependent on the second unknown variable $z$ (i.e., the $i$-th component $g^i$ of the generator $g$ only depends on the $i$-th row $z^i$ of the variable $z$ for each $i=1,cdots,n$ ). Three new results are established on the local and global solutions when the terminal value is bounded and the generator $g$ is subject to some general assumptions. When the terminal value is unbounded but is of exponential moments of arbitrary order, an existence and uniqueness result is given under the assumptions that the generator $g(t,y,z)$ is Lipschitz continuous in the first unknown variable $y$, and varies with the second unknown variable $z$ in a diagonal , component-wisely convex or concave, and quadratically growing way, which seems to be the first general solvability of systems of quadratic BSDEs with unbounded terminal values. This generalizes and strengthens some existing results via some new ideas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا