Learning Isometric Separation Maps


Abstract in English

Maximum Variance Unfolding (MVU) and its variants have been very successful in embedding data-manifolds in lower dimensional spaces, often revealing the true intrinsic dimension. In this paper we show how to also incorporate supervised class information into an MVU-like method without breaking its convexity. We call this method the Isometric Separation Map and we show that the resulting kernel matrix can be used as a binary/multiclass Support Vector Machine-like method in a semi-supervised (transductive) framework. We also show that the method always finds a kernel matrix that linearly separates the training data exactly without projecting them in infinite dimensional spaces. In traditional SVMs we choose a kernel and hope that the data become linearly separable in the kernel space. In this paper we show how the hyperplane can be chosen ad-hoc and the kernel is trained so that data are always linearly separable. Comparisons with Large Margin SVMs show comparable performance.

Download