Do you want to publish a course? Click here

A slowly accreting ~10 Myr old transitional disk in Orion OB1a

405   0   0.0 ( 0 )
 Added by Catherine Espaillat
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we present the Spitzer IRS spectrum of CVSO 224, the sole transitional disk located within the ~10 Myr old 25 Orionis group in Orion OB1a. A model fit to the spectral energy distribution of this object indicates a ~7 AU inner disk hole that contains a small amount of optically thin dust. In previous studies, CVSO 224 had been classified as a weak-line T Tauri star based on its Halpha equivalent width, but here we find an accretion rate of 7x10^-11 Msun/yr based on high-resolution Hectochelle data. CVSO 224s low mass accretion rate is in line with photoevaporative clearing theories. However, the Spitzer IRS spectrum of CVSO 224 has a substantial mid-infrared excess beyond 20microns which indicates that it is surrounded by a massive outer disk. Millimeter measurements are necessary to constrain the mass of the outer disk around CVSO 224 in order to confirm that photoevaporation is not the mechanism behind creating its inner disk hole.



rate research

Read More

161 - E. Furlan 2007
We present the mid-infrared spectrum, obtained with the Spitzer Infrared Spectrograph (IRS), of HD 98800, a quadruple star system located in the 10-Myr-old TW Hydrae association. It has a known mid-infrared excess that arises from a circumbinary disk around the B components of the system. The IRS spectrum confirms that the disk around HD 98800 B displays no excess emission below about 5.5 micron, implying an optically thick disk wall at 5.9 AU and an inner, cleared-out region; however, some optically thin dust, consisting mainly of 3-micron-sized silicate dust grains, orbits the binary in a ring between 1.5 and 2 AU. The peculiar structure and apparent lack of gas in the HD 98800 B disk suggests that this system is likely already at the debris disks stage, with a tidally truncated circumbinary disk of larger dust particles and an inner, second-generation dust ring, possibly held up by the resonances of a planet. The unusually large infrared excess can be explained by gravitational perturbations of the Aa+Ab pair puffing up the outer dust ring and causing frequent collisions among the larger particles.
We present emph{Herschel} PACS observations of 8 Classical T Tauri Stars in the $sim 7-10$ Myr old OB1a and the $sim 4-5$ Myr old OB1b Orion sub-asscociations. Detailed modeling of the broadband spectral energy distributions, particularly the strong silicate emission at 10 $mu$m, shows that these objects are (pre)transitional disks with some amount of small optically thin dust inside their cavities, ranging from $sim 4$ AU to $sim 90$ AU in size. We analyzed emph{Spitzer} IRS spectra for two objects in the sample: CVSO-107 and CVSO-109. The IRS spectrum of CVSO-107 indicates the presence of crystalline material inside its gap while the silicate feature of CVSO-109 is characterized by a pristine profile produced by amorphous silicates; the mechanisms creating the optically thin dust seem to depend on disk local conditions. Using millimeter photometry we estimated dust disk masses for CVSO-107 and CVSO-109 lower than the minimum mass of solids needed to form the planets in our Solar System, which suggests that giant planet formation should be over in these disks. We speculate that the presence and maintenance of optically thick material in the inner regions of these pre-transitional disks might point to low-mass planet formation.
158 - Vincent C. Geers 2012
We present Herschel PACS spectroscopy of the [OI] 63 micron gas-line for three circumstellar disk systems showing signs of significant disk evolution and/or planet formation: HR 8799, HD 377 and RX J1852.3-3700. [OI] is undetected toward HR 8799 and HD 377 with 3 sigma upper limits of 6.8 x 10^-18 W m^-2 and 9.9 x 10^-18 W m^-2 respectively. We find an [OI] detection for RX J1852.3-3700 at 12.3 +- 1.8 x 10^-18 W m^-2. We use thermo-chemical disk models to model the gas emission, using constraints on the [OI] 63 micron, and ancillary data to derive gas mass upper limits and constrain gas-to-dust ratios. For HD 377 and HR 8799, we find 3 sigma upper limits on the gas mass of 0.1-20 Mearth. For RX J1852.3-3700, we find two distinct disk scenarios that could explain the detection of [OI] 63 micron and CO(2-1) upper limits reported from the literature: (i) a large disk with gas co-located with the dust (16-500 AU), resulting in a large tenuous disk with ~16 Mearth of gas, or (ii) an optically thick gas disk, truncated at ~70 AU, with a gas mass of 150 Mearth. We discuss the implications of these results for the formation and evolution of planets in these three systems.
Most Vega-like stars have far-infrared excess (60micron or longward in IRAS, ISO, or Spitzer MIPS bands) and contain cold dust (<~150K) analogous to the Suns Kuiper-Belt region. However, dust in a region more akin to our asteroid belt and thus relevant to the terrestrial planet building process is warm and produces excess emission in mid-infrared wavelengths. By cross-correlating Hipparcos dwarfs with the MSX catalog, we found that EF Cha, a member of the recently identified, ~10 Myr old, ``Cha-Near Moving Group, possesses prominent mid-infrared excess. N-band spectroscopy reveals a strong emission feature characterized by a mixture of small, warm, amorphous and possibly crystalline silicate grains. Survival time of warm dust grains around this A9 star is <~ 1E5 yrs, much less than the age of the star. Thus, grains in this extra-solar terrestrial planetary zone must be of second generation and not a remnant of primodial dust and are suggestive of substantial planet formation activity. Such second generation warm excess occurs around ~ 13% of the early-type stars in nearby young stellar associations.
598 - W.F. Thi , G. Mathews , F. Menard 2010
Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the Open-time large program GASPS. We complement this with continuum data and ground-based 12CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 micron. The other lines that were observed, [OI] at 145 micron and [CII] at 157 micron, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [12CO]/[13CO]=69 suggests a dust mass for grains with radius < 1 mm of ~1.9 times 10^-4 Msun (total solid mass of 3 times 10^-3 Msun) and a gas mass of (0.5--5) times 10^-3 Msun. The gas-to-dust mass may be lower than the standard interstellar value of 100.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا