We study monopoles and corresponding t Hooft tensor in QCD with a generic compact gauge group. This issue is relevant to the understanding of color confinement in terms of dual symmetry.
The long standing problem is solved why the number and the location of monopoles observed in Lattice configurations depend on the choice of the gauge used to detect them, in contrast to the obvious requirement that monopoles, as physical objects, must have a gauge-invariant status. It is proved, by use of non-abelian Bianchi identities, that monopoles are indeed gauge-invariant: the technique used to detect them has instead an efficiency which depends on the choice of the abelian projection, in a known and controllable way.
The hypothesis is analysed that the monopoles condensing in QCD vacuum to make it a dual superconductor are classical solutions of the equations of motion.
We discuss the lattice formulation of the t Hooft surface, that is, the two-dimensional surface operator of a dual variable. The t Hooft surface describes the world sheets of topological vortices. We derive the formulas to calculate the expectation value of the t Hooft surface in the multiple-charge lattice Abelian Higgs model and in the lattice non-Abelian Higgs model. As the first demonstration of the formula, we compute the intervortex potential in the charge-2 lattice Abelian Higgs model.
We study spontaneous chiral-symmetry breaking in SU(3) QCD in terms of the dual superconductor picture for quark confinement in the maximally Abelian (MA) gauge, using lattice QCD Monte Carlo simulations with four different lattices of $16^4$, $24^4$, $24^3times 6$ at $beta=6.0$ (i.e., the spacing $a simeq$ 0.1 fm), and $32^4$ at $beta=6.2$ (i.e., $a simeq$ 0.075 fm), at the quenched level. First, in the confinement phase, we find Abelian dominance and monopole dominance in the MA gauge for the chiral condensate in the chiral limit,using the two different methods of i) the Banks-Casher relation with the Dirac eigenvalue density and ii) finite quark-mass calculations with the quark propagator and its chiral extrapolation. In the high-temperature deconfined phase, the chiral restoration is observed also for the Abelian and the monopole sectors. Second, we investigate local correlation between the chiral condensate and monopoles, which topologically appear in the MA gauge. We find that the chiral condensate locally takes a quite large value near monopoles. As an interesting possibility, the strong magnetic field around monopoles is responsible to chiral symmetry breaking in QCD, similarly to the magnetic catalysis.
Adriano Di Giacomo
,Luca Lepori
,Fabrizio Pucci
.
(2008)
.
"Homotopy, monopoles and t Hooft tensor in QCD with generic gauge group"
.
Adriano Di Giacomo
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا