Do you want to publish a course? Click here

Correlators in Nontrivial Backgrounds

121   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Operators in N=4 super Yang-Mills theory with an R-charge of O(N^2) are dual to backgrounds which are asymtotically AdS5xS5. In this article we develop efficient techniques that allow the computation of correlation functions in these backgrounds. We find that (i) contractions between fields in the string words and fields in the operator creating the background are the field theory accounting of the new geometry, (ii) correlation functions of probes in these backgrounds are given by the free field theory contractions but with rescaled propagators and (iii) in these backgrounds there are no open string excitations with their special end point interactions; we have only closed string excitations.



rate research

Read More

We consider the free propagation of totally symmetric massive bosonic fields in nontrivial backgrounds. The mutual compatibility of the dynamical equations and constraints in flat space amounts to the existence of an Abelian algebra formed by the dAlembertian, divergence and trace operators. The latter, along with the symmetrized gradient, symmetrized metric and spin operators, actually generate a bigger non-Abelian algebra, which we refer to as the consistency algebra. We argue that in nontrivial backgrounds, it is some deformed version of this algebra that governs the consistency of the system. This can be motivated, for example, from the theory of charged open strings in a background gauge field, where the Virasoro algebra ensures consistent propagation. For a gravitational background, we outline a systematic procedure of deforming the generators of the consistency algebra in order that their commutators close. We find that equal-radii AdSp X Sq manifolds, for arbitrary p and q, admit consistent propagation of massive and massless fields, with deformations that include no higher-derivative terms but are non-analytic in the curvature. We argue that analyticity of the deformations for a generic manifold may call for the inclusion of mixed-symmetry tensor fields like in String Theory.
The problem of computing the anomalous dimensions of a class of (nearly) half-BPS operators with a large R-charge is reduced to the problem of diagonalizing a Cuntz oscillator chain. Due to the large dimension of the operators we consider, non-planar corrections must be summed to correctly construct the Cuntz oscillator dynamics. These non-planar corrections do not represent quantum corrections in the dual gravitational theory, but rather, they account for the backreaction from the heavy operator whose dimension we study. Non-planar corrections accounting for quantum corrections seem to spoil integrability, in general. It is interesting to ask if non-planar corrections that account for the backreaction also spoil integrability. We find a limit in which our Cuntz chain continues to admit extra conserved charges suggesting that integrability might survive.
In this paper we discuss the effects of nontrivial boundary conditions or backgrounds, including non-perturbative ones, on the renormalization program for systems in two dimensions. Here we present an alternative renormalization procedure such that these non-perturbative conditions can be taken into account in a self-contained and, we believe, self-consistent manner. These conditions have profound effects on the properties of the system, in particular all of its $n$-point functions. To be concrete, we investigate these effects in the $lambda phi^4$ model in two dimensions and show that the mass counterterms turn out to be proportional to the Greens functions which have nontrivial position dependence in these cases. We then compute the difference between the mass counterterms in the presence and absence of these conditions. We find that in the case of nontrivial boundary conditions this difference is minimum between the boundaries and infinite on them. The minimum approaches zero when the boundaries go to infinity. In the case of nontrivial backgrounds, we consider the kink background and show that the difference is again small and localized around the kink.
We investigate the influence of a brane on the vacuum expectation value (VEV) of the current density for a charged fermionic field in background of locally AdS spacetime with an arbitrary number of toroidally compact dimensions and in the presence of a constant gauge field. Along compact dimensions the field operator obeys quasiperiodicity conditions with arbitrary phases and on the brane it is constrained by the bag boundary condition. The VEVs for the charge density and the components of the current density along uncompact dimensions vanish. The components along compact dimensions are decomposed into the brane-free and brane-induced contributions. The behavior of the latter in various asymptotic regions of the parameters is investigated. It particular, it is shown that the brane-induced contribution is mainly located near the brane and vanishes on the AdS boundary and on the horizon. An important feature is the finiteness of the current density on the brane. Applications are given to $Z_2$-symmetric braneworlds of the Randall-Sundrum type with compact dimensions for two classes of boundary conditions on the fermionic field. In the special case of three-dimensional spacetime, the corresponding results are applied for the investigation of the edge effects on the ground state current density induced in curved graphene tubes by an enclosed magnetic flux.
Connected $N$-point amplitudes in quantum field theory are enhanced by a factor of $N!$ in appropriate regimes of kinematics and couplings, but the non-perturbative analysis of this for collider physics applications is subtle. We resolve this question for $N$-point correlation functions of cosmological perturbations in multifield inflation, and comment on its application to primordial non-Gaussianity. We find that they are calculably $N!$-enhanced using a simple model for the mixing of the field sectors which leads to a convolution of their probability distributions. This effect leads to model-dependent but interesting prospects for enhanced observational sensitivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا