Do you want to publish a course? Click here

Phase transitions in large N(c) heavy quark potentials

207   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We describe phase transitions in the heavy quark potential in planar gauge theories having wrapped D5-brane string duals. A new phase transition, previously unnoticed in these models, is driven by the source of a large dimension operator. Another transition, which has already been described in a previous paper, is driven by the presence of light dynamical flavors. Both transitions connect a Coulomb-like phase to a confining linear phase.



rate research

Read More

Utilizing the large N dual description of a metastable system of branes and anti-branes wrapping rigid homologous S^2s in a non-compact Calabi-Yau threefold, we study phase transitions induced by changing the positions of the S^2s. At leading order in 1/N the effective potential for this system is computed by the planar limit of an auxiliary matrix model. Beginning at the two loop correction, the degenerate vacuum energy density of the discrete confining vacua split, and a potential is generated for the axion. Changing the relative positions of the S^2s causes discrete jumps in the energetically preferred confining vacuum and can also obstruct direct brane/anti-brane annihilation processes. The branes must hop to nearby S^2s before annihilating, thus significantly increasing the lifetime of the corresponding non-supersymmetric vacua. We also speculate that misaligned metastable glueball phases may generate a repulsive inter-brane force which stabilizes the radial mode present in compact Calabi-Yau threefolds.
59 - N. Caporaso 2005
The counting of microstates of BPS black-holes on local Calabi-Yau of the form ${mathcal O}(p-2)oplus{mathcal O}(-p) longrightarrow S^2$ is explored by computing the partition function of q-deformed Yang-Mills theory on $S^2$. We obtain, at finite $N$, the instanton expansion of the gauge theory. It can be written exactly as the partition function for U(N) Chern-Simons gauge theory on a Lens space, summed over all non-trivial vacua, plus a tower of non-perturbative instanton contributions. In the large $N$ limit we find a peculiar phase structure in the model. At weak string coupling the theory reduces to the trivial sector and the topological string partition function on the resolved conifold is reproduced in this regime. At a certain critical point, instantons are enhanced and the theory undergoes a phase transition into a strong coupling regime. The transition from the strong coupling phase to the weak coupling phase is of third order.
With combined hopping parameter and strong coupling expansions, we calculate a dimensionally reduced Polyakov-loop effective theory valid for heavy quarks at nonzero temperature and arbitrary chemical potential. We numerically compute the critical endpoint of the deconfinement transition as a function of quark masses and number of flavours. We also investigate the applicability of the model to the low-T and high density region, specifically in terms of baryon condensation phenomena.
140 - Ding-fang Zeng 2008
We construct some AdS/QCD models by the systematic procedure of GKN. These models reflect three rather different asymptotics the gauge theory beta functions approach at the infrared region, $betapropto-lambda^2, -lambda^3$ and $betapropto-lambda$, where $lambda$ is the t Hooft coupling constant. We then calculate the heavy quark potentials in these models by holographic methods and find that they can more consistently fit the lattice data relative to the usual models which do not include the renormalization group improving effects. But only use the lattice QCD heavy quark potentials as constrains, we cannot distinguish which kind of infrared asymptotics is the better one.
We study heavy-quark potential in an inflationary braneworld scenario. The scenario we consider is an (Euclidean) inflating braneworld $AdS_4$ embedded in a static Euclidean $AdS_5$. Using gauge/gravity duality we obtain a confining phase depending on the ratio between the Hubble parameter $H$ in the braneworld and the brane tension $sigma$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا