We examine nucleosynthesis in the electron capture supernovae of progenitor AGB stars with an O-Ne-Mg core (with the initial stellar mass of 8.8 M_odot). Thermodynamic trajectories for the first 810 ms after core bounce are taken from a recent state-of-the-art hydrodynamic simulation. The presented nucleosynthesis results are characterized by a number of distinct features that are not shared with those of other supernovae from the collapse of stars with iron core (with initial stellar masses of more than 10 M_odot). First is the small amount of 56Ni (= 0.002-0.004 M_odot) in the ejecta, which can be an explanation for observed properties of faint supernovae such as SNe 2008S and 1997D. In addition, the large Ni/Fe ratio is in reasonable agreement with the spectroscopic result of the Crab nebula (the relic of SN 1054). Second is the large production of 64Zn, 70Ge, light p-nuclei (74Se, 78Kr, 84Sr, and 92Mo), and in particular, 90Zr, which originates from the low Y_e (= 0.46-0.49, the number of electrons per nucleon) ejecta. We find, however, that only a 1-2% increase of the minimum Y_e moderates the overproduction of 90Zr. In contrast, the production of 64Zn is fairly robust against a small variation of Y_e. This provides the upper limit of the occurrence of this type of events to be about 30% of all core-collapse supernovae.