Do you want to publish a course? Click here

Magnetism Localization in Spin-Polarized One-Dimensional Anderson-Hubbard Model

230   0   0.0 ( 0 )
 Added by Masahiko Okumura
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to study an interplay of disorder, correlation, and spin imbalance on antiferromagnetism, we systematically explore the ground state of one-dimensional spin-imbalanced Anderson-Hubbard model by using the density-matrix renormalization group method. We find that disorders localize the antiferromagnetic spin density wave induced by imbalanced fermions and the increase of the disorder magnitude shrinks the areas of the localized antiferromagnetized regions. Moreover, the antiferromagnetism finally disappears above a large disorder. These behaviors are observable in atomic Fermi gases loaded on optical lattices and disordered strongly-correlated chains under magnetic field.



rate research

Read More

We study the interplay of disorder and correlation in the one-dimensional hole-doped Hubbard-model with disorder (Anderson-Hubbard model) by using the density-matrix renormalization group method. Concentrating on the doped-hole density profile, we find in a large $U/t$ regime that the clean system exhibits a simple fluid-like behavior whereas finite disorders create locally Mott regions which expand their area with increasing the disorder strength contrary to the ordinary sense. We propose that such an anomalous Mott phase formation assisted by disorder is observable in atomic Fermi gases by setup of the box shape trap.
We derive the disorder vs. doping phase diagram of the doped Hubbard model via Dynamical Mean Field Theory combined with Typical Medium Theory, which allows the description of both Mott (correlation driven) and Anderson (disorder driven) metal-insulator transitions. We observe a transition from a metal to an Anderson-Mott insulator for increasing disorder strength at all interactions. In the weak correlation regime and rather small doping, the Anderson-Mott insulator displays properties which are alike to the ones found at half-filling. In particular, this phase is characterized by the presence of empty sites. If we further increase either the doping or the correlation however, an Anderson-Mott phase of different kind arises for sharply weaker disorder strength. This phase occupies the largest part of the phase diagram in the strong correlation regime, and is characterized by the absence of the empty sites.
196 - S. Nishimoto , T. Shirakawa 2009
We study the one-dimensional Anderson-Hubbard model using the density-matrix renormalization group method. The influence of disorder on the Tomonaga-Luttinger liquid behavior is quantitatively discussed. Based on the finite-size scaling analysis of density-density correlation functions, we find the following results: i) the charge exponent is significantly reduced by disorder at low filling and near half filling, ii) the localization length decays as $xi sim Delta^{-2}$, where $Delta$ is the disorder strength, independently of the on-site Coulomb interaction as well as band filling, and iii) the localization length is strongly suppressed by the on-site Coulomb interaction near half filling in association with the formation of the Mott plateaus.
An Anderson impurity in a Hubbard model on chains with finite length is studied using the density-matrix renormalization group (DMRG) technique. In the first place, we analyzed how the reduction of electron density from half-filling to quarter-filling affects the Kondo resonance in the limit of Hubbard repulsion U=0. In general, a weak dependence with the electron density was found for the local density of states (LDOS) at the impurity except when the impurity, at half-filling, is close to a mixed valence regime. Next, in the central part of this paper, we studied the effects of finite Hubbard interaction on the chain at quarter-filling. Our main result is that this interaction drives the impurity into a more defined Kondo regime although accompanied in most cases by a reduction of the spectral weight of the impurity LDOS. Again, for the impurity in the mixed valence regime, we observed an interesting nonmonotonic behavior. We also concluded that the conductance, computed for a small finite bias applied to the leads, follows the behavior of the impurity LDOS, as in the case of non-interacting chains. Finally, we analyzed how the Hubbard interaction and the finite chain length affect the spin compensation cloud both at zero and at finite temperature, in this case using quantum Monte Carlo techniques.
We compute the phase diagram of the one-dimensional Bose-Hubbard model with a quasi-periodic potential by means of the density-matrix renormalization group technique. This model describes the physics of cold atoms loaded in an optical lattice in the presence of a superlattice potential whose wave length is incommensurate with the main lattice wave length. After discussing the conditions under which the model can be realized experimentally, the study of the density vs. the chemical potential curves for a non-trapped system unveils the existence of gapped phases at incommensurate densities interpreted as incommensurate charge-density wave phases. Furthermore, a localization transition is known to occur above a critical value of the potential depth V_2 in the case of free and hard-core bosons. We extend these results to soft-core bosons for which the phase diagrams at fixed densities display new features compared with the phase diagrams known for random box distribution disorder. In particular, a direct transition from the superfluid phase to the Mott insulating phase is found at finite V_2. Evidence for reentrances of the superfluid phase upon increasing interactions is presented. We finally comment on different ways to probe the emergent quantum phases and most importantly, the existence of a critical value for the localization transition. The later feature can be investigated by looking at the expansion of the cloud after releasing the trap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا