Do you want to publish a course? Click here

Applications of the operator $H(alpha,beta)$ to the Humbert double hypergeometric functions

206   0   0.0 ( 0 )
 Added by Anvar Hasanov
 Publication date 2008
  fields Physics
and research's language is English
 Authors A. Hasanov




Ask ChatGPT about the research

By making use of some techniques based upon certain inverse new pairs of symbolic operators, the author investigate several decomposition formulas associated with Humbert hypergeometric functions $Phi_1 $, $Phi_2 $, $Phi_3 $, $Psi_1 $, $Psi_2 $, $Xi_1 $ and $Xi_2 $. These operational representations are constructed and applied in order to derive the corresponding decomposition formulas. With the help of these inverse pairs of symbolic operators, a total 34 decomposition formulas are found. Euler type integrals, which are connected with Humberts functions are found.



rate research

Read More

267 - Monika Winklmeier 2008
The operator associated to the angular part of the Dirac equation in the Kerr-Newman background metric is a block operator matrix with bounded diagonal and unbounded off-diagonal entries. The aim of this paper is to establish a variational principle for block operator matrices of this type and to derive thereof upper and lower bounds for the angular operator mentioned above. In the last section, these analytic bounds are compared to numerical values from the literature.
The Complete Manifold of Ground State Eigenfunctions for the Purely Magnetic 2D Pauli Operator is considered as a by-product of the new reduction found by the present authors few years ago for the Algebrogeometric Inverse Spectral Data (i.e. Riemann Surfaces and Divisors). This reduction is associated with the (2+1) Soliton Hierarhy containing a 2D analog of the famous Burgers System. This article contains also exposition of the previous works made since 1980 including the first topological ideas in the space of quasimomenta. We present here also new results dedicated to the self-adjoint boundary problems for Pauli Operator. The 2D zero level nonspectral Bloch-Floquet functions give discrete points of additional spectrum similar to the boundary states of finite-gap 1D potentials in the gaps.
We study the spectrum of the linear operator $L = - partial_{theta} - epsilon partial_{theta} (sin theta partial_{theta})$ subject to the periodic boundary conditions on $theta in [-pi,pi]$. We prove that the operator is closed in $L^2([-pi,pi])$ with the domain in $H^1_{rm per}([-pi,pi])$ for $|epsilon| < 2$, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in $H^1_{rm per}([-pi,pi])$.
Weyl points are degenerate points on the spectral bands at which energy bands intersect conically. They are the origins of many novel physical phenomena and have attracted much attention recently. In this paper, we investigate the existence of such points in the spectrum of the 3-dimensional Schr{o}dinger operator $H = - Delta +V(textbf{x})$ with $V(textbf{x})$ being in a large class of periodic potentials. Specifically, we give very general conditions on the potentials which ensure the existence of 3-fold Weyl points on the associated energy bands. Different from 2-dimensional honeycomb structures which possess Dirac points where two adjacent band surfaces touch each other conically, the 3-fold Weyl points are conically intersection points of two energy bands with an extra band sandwiched in between. To ensure the 3-fold and 3-dimensional conical structures, more delicate, new symmetries are required. As a consequence, new techniques combining more symmetries are used to justify the existence of such conical points under the conditions proposed. This paper provides comprehensive proof of such 3-fold Weyl points. In particular, the role of each symmetry endowed to the potential is carefully analyzed. Our proof extends the analysis on the conical spectral points to a higher dimension and higher multiplicities. We also provide some numerical simulations on typical potentials to demonstrate our analysis.
We recall that diagonals of rational functions naturally occur in lattice statistical mechanics and enumerative combinatorics. We find that a seven-parameter rational function of three variables with a numerator equal to one (reciprocal of a polynomial of degree two at most) can be expressed as a pullbacked 2F1 hypergeometric function. This result can be seen as the simplest non-trivial family of diagonals of rational functions. We focus on some subcases such that the diagonals of the corresponding rational functions can be written as a pullbacked 2F1 hypergeometric function with two possible rational functions pullbacks algebraically related by modular equations, thus showing explicitely that the diagonal is a modular form. We then generalise this result to eight, nine and ten parameters families adding some selected cubic terms at the denominator of the rational function defining the diagonal. We finally show that each of these previous rational functions yields an infinite number of rational functions whose diagonals are also pullbacked 2F1 hypergeometric functions and modular forms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا