Do you want to publish a course? Click here

Directed Transmission Method, A Fully Asynchronous approach to Solve Sparse Linear Systems in Parallel

427   0   0.0 ( 0 )
 Added by Fei Wei
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a new distributed algorithm, called Directed Transmission Method (DTM). DTM is a fully asynchronous and continuous-time iterative algorithm to solve SPD sparse linear system. As an architecture-aware algorithm, DTM could be freely running on all kinds of heterogeneous parallel computer. We proved that DTM is convergent by making use of the final-value theorem of Laplacian Transformation. Numerical experiments show that DTM is stable and efficient.



rate research

Read More

896 - Fei Wei , Huazhong Yang 2010
In this paper, we propose a new parallel algorithm which could work naturally on the parallel computer with arbitrary number of processors. This algorithm is named Virtual Transmission Method (VTM). Its physical backgroud is the lossless transmission line and microwave network. The basic idea of VTM is to insert lossless transmission lines into the sparse linear system to achieve distributed computing. VTM is proved to be convergent to solve SPD linear system. Preconditioning method and performance model are presented. Numerical experiments show that VTM is efficient, accurate and stable. Accompanied with VTM, we bring in a new technique to partition the symmetric linear system, which is named Generalized Node & Branch Tearing (GNBT). It is based on Kirchhoffs Current Law from circuit theory. We proved that GNBT is feasible to partition any SPD linear system.
203 - Fei Wei , Huazhong Yang 2009
Waveform Relaxation method (WR) is a beautiful algorithm to solve Ordinary Differential Equations (ODEs). However, because of its poor convergence capability, it was rarely used. In this paper, we propose a new distributed algorithm, named Waveform Transmission Method (WTM), by virtually inserting waveform transmission lines into the dynamical system to achieve distributed computing of extremely large ODEs. WTM has better convergence capability than the traditional WR algorithms.
We consider a global variable consensus ADMM algorithm for solving large-scale PDE parameter estimation problems asynchronously and in parallel. To this end, we partition the data and distribute the resulting subproblems among the available workers. Since each subproblem can be associated with different forward models and right-hand-sides, this provides ample options for tailoring the method to different applications including multi-source and multi-physics PDE parameter estimation problems. We also consider an asynchronous variant of consensus ADMM to reduce communication and latency. Our key contribution is a novel weighting scheme that empirically increases the progress made in early iterations of the consensus ADMM scheme and is attractive when using a large number of subproblems. This makes consensus ADMM competitive for solving PDE parameter estimation, which incurs immense costs per iteration. The weights in our scheme are related to the uncertainty associated with the solutions of each subproblem. We exemplarily show that the weighting scheme combined with the asynchronous implementation improves the time-to-solution for a 3D single-physics and multiphysics PDE parameter estimation problems.
132 - Leilei Wei , Yinnian He 2020
The tempered fractional diffusion equation could be recognized as the generalization of the classic fractional diffusion equation that the truncation effects are included in the bounded domains. This paper focuses on designing the high order fully discrete local discontinuous Galerkin (LDG) method based on the generalized alternating numerical fluxes for the tempered fractional diffusion equation. From a practical point of view, the generalized alternating numerical flux which is different from the purely alternating numerical flux has a broader range of applications. We first design an efficient finite difference scheme to approximate the tempered fractional derivatives and then a fully discrete LDG method for the tempered fractional diffusion equation. We prove that the scheme is unconditionally stable and convergent with the order $O(h^{k+1}+tau^{2-alpha})$, where $h, tau$ and $k$ are the step size in space, time and the degree of piecewise polynomials, respectively. Finally numerical experimets are performed to show the effectiveness and testify the accuracy of the method.
In this paper, we present a numerical method, based on iterative Bregman projections, to solve the optimal transport problem with Coulomb cost. This is related to the strong interaction limit of Density Functional Theory. The first idea is to introduce an entropic regularization of the Kantorovich formulation of the Optimal Transport problem. The regularized problem then corresponds to the projection of a vector on the intersection of the constraints with respect to the Kullback-Leibler distance. Iterative Bregman projections on each marginal constraint are explicit which enables us to approximate the optimal transport plan. We validate the numerical method against analytical test cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا