Do you want to publish a course? Click here

Precision charm physics, m_c and alpha_s from lattice QCD

124   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We present an update of results from the HPQCD collaboration on charm physics using the Highly Improved Staggered Quark action. This includes a precise determination of m_c using moments of current-current correlators combined with high-order continuum QCD perturbation theory. We also include an update on the determination of alpha_s from lattice QCD, preliminary results on the determination of m_b and a summary plot of the status of the gold-plated meson spectrum. There is an appendix on tackling systematic errors in fitting using the Bayesian approach.



rate research

Read More

We use lattice QCD simulations, with MILC gluon configurations and HISQ c-quark propagators, to make very precise determinations of moments of charm-quark pseudoscalar, vector and axial-vector correlators. These moments are combined with new four-loop results from continuum perturbation theory to obtain several new determinations of the MSbar mass of the charm quark and of the MSbar coupling. We find m_c(3GeV)=0.986(10)GeV, or, equivalently, m_c(m_c)=1.268(9)GeV, both for n_f=4 flavors; and alpha_msb(3GeV,n_f=4)=0.251(6), or, equivalently, alpha_msb(M_Z,n_f=5)=0.1174(12). The new mass agrees well with results from continuum analyses of the vector correlator using experimental data for e+e- annihilation (instead of using lattice QCD simulations). These lattice and continuum results are the most accurate determinations to date of this mass. Ours is also one of the most accurate determinations of the QCD coupling by any method.
We obtain a new value for the QCD coupling constant by combining lattice QCD simulations with experimental data for hadron masses. Our lattice analysis is the first to: 1) include vacuum polarization effects from all three light-quark flavors (using MILC configurations); 2) include third-order terms in perturbation theory; 3) systematically estimate fourth and higher-order terms; 4) use an unambiguous lattice spacing; and 5) use an $order(a^2)$-accurate QCD action. We use 28~different (but related) short-distance quantities to obtain $alpha_{bar{mathrm{MS}}}^{(5)}(M_Z) = 0.1170(12)$.
We use lattice QCD simulations, with MILC configurations (including vacuum polarization from u, d, and s quarks), to update our previous determinations of the QCD coupling constant. Our new analysis uses results from 6 different lattice spacings and 12 different combinations of sea-quark masses to significantly reduce our previous errors. We also correct for finite-lattice-spacing errors in the scale setting, and for nonperturbative chiral corrections to the 22 short-distance quantities from which we extract the coupling. Our final result is alpha_V(7.5GeV,nf=3) = 0.2120(28), which is equivalent to alpha_msbar(M_Z,n_f=5)= 0.1183(8). We compare this with our previous result, which differs by one standard deviation.
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
We report on an estimate of alpha_s, renormalised in the MSbar scheme at the tau and Z^0 mass scales, by means of lattice QCD. Our major improvement compared to previous lattice calculations is that, for the first time, no perturbative treatment at the charm threshold has been required since we have used statistical samples of gluon fields built by incorporating the vacuum polarisation effects of u/d, s and c sea quarks. Extracting alpha_s in the Taylor scheme from the lattice measurement of the ghost-ghost-gluon vertex, we obtain alpha_s^{MSbar}(m^2_Z)=0.1200(14) and alpha_s^{MSbar}(m^2_tau)=0.339(13).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا