Scalar Casimir-Polder forces for uniaxial corrugations


Abstract in English

We investigate the Dirichlet-scalar equivalent of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. The complexity of the problem can be reduced to a one-dimensional Greens function equation along the corrugation which can be solved numerically. Our technique is fully nonperturbative in the height profile of the corrugation. We present explicit results for experimentally relevant sinusoidal and sawtooth corrugations. Parameterizing the deviations from the planar limit in terms of an anomalous dimension which measures the power-law deviation from the planar case, we observe up to order-one anomalous dimensions at small and intermediate scales and a universal regime at larger distances. This large-distance universality can be understood from the fact that the relevant fluctuations average over corrugation structures smaller than the atom-wall distance.

Download