No Arabic abstract
We present an analysis of the spatial distribution of various stellar populations within the Large Magellanic Cloud. We combine mid-infrared selected young stellar objects, optically selected samples with mean ages between ~9 and ~1000 Myr, and existing stellar cluster catalogues to investigate how stellar structures form and evolve within the LMC. For the analysis we use Fractured Minimum Spanning Trees, the statistical Q parameter, and the two-point correlation function. Restricting our analysis to young massive (OB) stars we confirm our results obtained for M33, namely that the luminosity function of the groups is well described by a power-law with index -2, and that there is no characteristic length-scale of star-forming regions. We find that stars in the LMC are born with a large amount of substructure, consistent with a 2D fractal distribution with dimension ~1.8 and evolve towards a uniform distribution on a timescale of ~175 Myr. This is comparable to the crossing time of the galaxy and we suggest that stellar structure, regardless of spatial scale, will be eliminated in a crossing time. This may explain the smooth distribution of stars in massive/dense young clusters in the Galaxy, while other, less massive, clusters still display large amounts of structure at similar ages. By comparing the stellar and star cluster distributions and evolving timescales, we show that infant mortality of clusters (or popping clusters) have a negligible influence on galactic structure. Finally, we quantify the influence of the elongation, differential extinction, and contamination of a population on the measured Q value.
We present an analysis of the spatial distribution of various stellar populations within the Large and Small Magellanic Clouds. We use optically selected stellar samples with mean ages between ~9 and ~1000 Myr, and existing stellar cluster catalogues to investigate how stellar structures form and evolve within the LMC/SMC. We use two statistical techniques to study the evolution of structure within these galaxies, the $Q$-parameter and the two-point correlation function (TPCF). In both galaxies we find the stars are born with a high degree of substructure (i.e. are highly fractal) and that the stellar distribution approaches that of the background population on timescales similar to the crossing times of the galaxy (~80/150 Myr for the SMC/LMC respectively). By comparing our observations to simple models of structural evolution we find that popping star clusters do not significantly influence structural evolution in these galaxies. Instead we argue that general galactic dynamics are the main drivers, and that substructure will be erased in approximately the crossing time, regardless of spatial scale, from small clusters to whole galaxies. This can explain why many young Galactic clusters have high degrees of substructure, while others are smooth and centrally concentrated. We conclude with a general discussion on cluster infant mortality, in an attempt to clarify the time/spatial scales involved.
We present a study of the variation of spatial structure of stellar populations within dwarf galaxies as a function of the population age. We use deep Hubble Space Telescope/Advanced Camera for Surveys imaging of nearby dwarf galaxies in order to resolve individual stars and create composite colour-magnitude diagrams (CMDs) for each galaxy. Using the obtained CMDs, we select Blue Helium Burning stars (BHeBs), which can be unambiguously age-dated by comparing the absolute magnitude of individual stars with stellar isochrones. Additionally, we select a very young (<10 Myr) population of OB stars for a subset of the galaxies based on the tip of the young main-sequence. By selecting stars in different age ranges we can then study how the spatial distribution of these stars evolves with time. We find, in agreement with previous studies, that stars are born within galaxies with a high degree of substructure which is made up of a continuous distribution of clusters, groups and associations from parsec to hundreds of parsec scales. These structures disperse on timescales of tens to hundreds of Myr, which we quantify using the two-point correlation function and the Q-parameter developed by Cartwright & Whitworth (2004). On galactic scales, we can place lower limits on the time it takes to remove the original structure (i.e., structure survives for at least this long), tevo, which varies between ~100~Myr (NGC~2366) and ~350 Myr (DDO~165). This is similar to what we have found previously for the SMC (~80~Myr) and the LMC (~175 Myr). We do not find any strong correlations between tevo and the luminosity of the host galaxy.
Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide scale range. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly non-uniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log($tau$/yr)~=~7.2, contains most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log($tau$/yr)~=~8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30--300~pc, suggesting that the young stellar structures are completely dispersed on a timescale of $sim$100~Myr. These results are consistent with the characteristics of the 30~Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method-dependent for stellar samples with significant age spreads.
We present new FLAMES@VLT spectroscopic observations of 30 stars in the field of the LMC stellar cluster NGC 1866. NGC 1866 is one of the few young and massive globular cluster that is close enough so that its stars can be individually studied in detail. Radial velocities have been used to separate stars belonging to the cluster and to the LMC field and the same spectra have been used to derive chemical abundances for a variety of elements, from [Fe/H] to the light (i.e. Na, O, Mg...) to the heavy ones. The average iron abundance of NGC 1866 turns out to be [Fe/H]= -0.43+-0.01 dex (with a dispersion of 0.04 dex), from the analysis of 14 cluster-member stars. Within our uncertainties, the cluster stars are homogeneous, as far as chemical composition is concerned, independent of the evolutionary status. The observed cluster stars do not show any sign of the light elements anti-correlation present in all the Galactic globular clusters so far studied, and also found in the old LMC stellar clusters. A similar lack of anti-correlations has been detected in the massive intermediate-age LMC clusters, indicating a different formation/evolution scenario for the LMC massive clusters younger than ~3 Gyr with respect to the old ones. Also opposite to the Galactic globulars, the chemical composition of the older RGB field stars and of the young post-MS cluster stars show robust homogeneity suggesting a quite similar process of chemical evolution. The field and cluster abundances are in agreement with recent chemical analysis of LMC stars, which show a distinctive chemical pattern for this galaxy with respect to the Milky Way. We discuss these findings in light of the theoretical scenario of chemical evolution of the LMC.
We present HST photometry for three fields in the outer disk of the LMC extending approximately four magnitudes below the faintest main sequence turnoff. We cannot detect any strongly significant differences in the stellar populations of the three fields based on the morphologies of the color-magnitude diagrams, the luminosity functions, and the relative numbers of stars in different evolutionary stages. Our observations therefore suggest similar star formation histories in these regions, although some variations are certainly allowed. The fields are located in two regions of the LMC: one is in the north-east field and two are located in the north-west. Under the assumption of a common star formation history, we combine the three fields with ground-based data at the same location as one of the fields to improve statistics for the brightest stars. We compare this stellar population with those predicted from several simple star formation histories suggested in the literature, using a combination of the R-method of Bertelli et al (1992) and comparisons with the observed luminosity function. The only model which we consider that is not rejected by the observations is one in which the star formation rate is roughly constant for most of the LMCs history and then increases by a factor of three about 2 Gyr ago. Such a model has roughly equal numbers of stars older and younger than 4 Gyr, and thus is not dominated by young stars. This star formation history, combined with a closed box chemical evolution model, is consistent with observations that the metallicity of the LMC has doubled in the past 2 Gyr.