Clone Theory: Its Syntax and Semantics, Applications to Universal Algebra, Lambda Calculus and Algebraic Logic


Abstract in English

The primary goal of this paper is to present a unified way to transform the syntax of a logic system into certain initial algebraic structure so that it can be studied algebraically. The algebraic structures which one may choose for this purpose are various clones over a full subcategory of a category. We show that the syntax of equational logic, lambda calculus and first order logic can be represented as clones or right algebras of clones over the set of positive integers. The semantics is then represented by structures derived from left algebras of these clones.

Download