Faddeev-Merkuriev integral equations for atomic three-body resonances


Abstract in English

Three-body resonances in atomic systems are calculated as complex-energy solutions of Faddeev-type integral equations. The homogeneous Faddeev-Merkuriev integral equations are solved by approximating the potential terms in a Coulomb-Sturmian basis. The Coulomb-Sturmian matrix elements of the three-body Coulomb Greens operator has been calculated as a contour integral of two-body Coulomb Greens matrices. This approximation casts the integral equation into a matrix equation and the complex energies are located as the complex zeros of the Fredholm determinant. We calculated resonances of the e-Ps system at higher energies and for total angular momentum L=1 with natural and unnatural parity

Download