At infinity of finite-dimensional CAT(0) spaces


Abstract in English

We show that any filtering family of closed convex subsets of a finite-dimensional CAT(0) space $X$ has a non-empty intersection in the visual bordification $ bar{X} = X cup partial X$. Using this fact, several results known for proper CAT(0) spaces may be extended to finite-dimensional spaces, including the existence of canonical fixed points at infinity for parabolic isometries, algebraic and geometric restrictions on amenable group actions, and geometric superrigidity for non-elementary actions of irreducible uniform lattices in products of locally compact groups.

Download