Do you want to publish a course? Click here

Forbush decreases and turbulence levels at CME fronts

527   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We seek to estimate the average level of MHD turbulence near coronal mass ejection (CME) fronts as they propagate from the Sun to the Earth. We examine the cosmic ray data from the GRAPES-3 tracking muon telescope at Ooty, together with the data from other sources for three well observed Forbush decrease events. Each of these events are associated with frontside halo Coronal Mass Ejections (CMEs) and near-Earth magnetic clouds. In each case, we estimate the magnitude of the Forbush decrease using a simple model for the diffusion of high energy protons through the largely closed field lines enclosing the CME as it expands and propagates from the Sun to the Earth. We use estimates of the cross-field diffusion coefficient $D_{perp}$ derived from published results of extensive Monte Carlo simulations of cosmic rays propagating through turbulent magnetic fields. Our method helps constrain the ratio of energy density in the turbulent magnetic fields to that in the mean magnetic fields near the CME fronts. This ratio is found to be $sim$ 2% for the 11 April 2001 Forbush decrease event, $sim$ 6% for the 20 November 2003 Forbush decrease event and $sim$ 249% for the much more energetic event of 29 October 2003.



rate research

Read More

Forbush decreases (FDs), which are short-term drops in the flux of galactic cosmic rays, are caused by the shielding from strong and/or turbulent magnetic structures in the solar wind, especially interplanetary coronal mass ejections (ICMEs) and their associated shocks, as well as corotating interaction regions. Such events can be observed at Earth, for example, using neutron monitors, and also at many other locations in the solar system, such as on the surface of Mars with the Radiation Assessment Detector instrument onboard Mars Science Laboratory. They are often used as a proxy for detecting the arrival of ICMEs or corotating interaction regions, especially when sufficient in situ solar wind measurements are not available. We compare the properties of FDs observed at Earth and Mars, focusing on events produced by ICMEs. We find that FDs at both locations show a correlation between their total amplitude and the maximum hourly decrease, but with different proportionality factors. We explain this difference using theoretical modeling approaches and suggest that it is related to the size increase of ICMEs, and in particular their sheath regions, en route from Earth to Mars. From the FD data, we can derive the sheath broadening factor to be between about 1.5 and 1.9, agreeing with our theoretical considerations. This factor is also in line with previous measurements of the sheath evolution closer to the Sun.
On July 25 2017 a multi-step Forbush decrease (FD) with the remarkable total amplitude of more than 15% was observed by MSL/RAD at Mars. We find that these particle signatures are related to very pronounced plasma and magnetic field signatures detected in situ by STEREO-A on July 24 2017, with a higher than average total magnetic field strength reaching more than 60 nT. In the observed time period STEREO-A was at a relatively small longitudinal separation (46 degrees) to Mars and both were located at the back side of the Sun as viewed from Earth. We analyse a number of multi-spacecraft and multi-instrument (both in situ and remote-sensing) observations, and employ modelling to understand these signatures. We find that the solar sources are two CMEs which erupted on July 23 2017 from the same source region on the back side of the Sun as viewed from Earth. Moreover, we find that the two CMEs interact non-uniformly, inhibiting the expansion of one of the CMEs in STEREO-A direction, whereas allowing it to expand more freely in the Mars direction. The interaction of the two CMEs with the ambient solar wind adds up to the complexity of the event, resulting in a long, sub-structured interplanetary disturbance at Mars, where different sub-structures correspond to different steps of the FD, adding-up to a globally large-amplitude FD.
We seek to identify the primary agents causing Forbush decreases (FDs) observed at the Earth in high rigidity cosmic rays. In particular, we ask if such FDs are caused mainly by coronal mass ejections (CMEs) from the Sun that are directed towards the Earth, or by their associated shocks. We use the muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We select those FD events that have a reasonably clean profile, and can be reasonably well associated with an Earth-directed CME and its associated shock. We employ two models: one that considers the CME as the sole cause of the FD (the CME-only model) and one that considers the shock as the only agent causing the FD (the shock-only model). We use an extensive set of observationally determined parameters for both these models. The only free parameter in these models is the level of MHD turbulence in the sheath region, which mediates cosmic ray diffusion (into the CME, for the CME-only model and across the shock sheath, for the shock-only model). We find that good fits to the GRAPES-3 multi-rigidity data using the CME-only model require turbulence levels in the CME sheath region that are only slightly higher than those estimated for the quiet solar wind. On the other hand, reasonable model fits with the shock-only model require turbulence levels in the sheath region that are an order of magnitude higher than those in the quiet solar wind. This observation naturally leads to the conclusion that the Earth-directed CMEs are the primary contributors to FDs observed in high rigidity cosmic rays.
After a prolong and deep solar minimum at the end of solar cycle 23, the current cycle 24 is one of the lowest cycles. The two periods of deep minimum and mini-maximum of the cycle 24 are connected by a period of increasing solar activity. In this work, the Forbush decreases of cosmic ray intensity during the period from January 2008 to December 2014 are studied. A statistical analysis of 749 events using the IZMIRAN database of Forbush effects obtained by processing the data of the worldwide neutron monitor network using the global survey method is performed. A further study of the events that happened on the Sun and affected the interplanetary space, and finally provoked the decreases of the galactic cosmic rays near Earth is performed. A statistical analysis of the amplitude of the cosmic ray decreases with solar and geomagnetic parameters is carried out. The results will be useful for space weather studies and especially for Forbush decreases forecasting.
104 - C. Grimani , M. Armano , H. Audley 2019
Non-recurrent short term variations of the galactic cosmic-ray (GCR) flux above 70 MeV n$^{-1}$ were observed between 2016 February 18 and 2017 July 3 aboard the European Space Agency LISA Pathfinder (LPF) mission orbiting around the Lagrange point L1 at 1.5$times$10$^6$ km from Earth. The energy dependence of three Forbush decreases (FDs) is studied and reported here. A comparison of these observations with others carried out in space down to the energy of a few tens of MeV n$^{-1}$ shows that the same GCR flux parameterization applies to events of different intensity during the main phase. FD observations in L1 with LPF and geomagnetic storm occurrence is also presented. Finally, the characteristics of GCR flux non-recurrent variations (peaks and depressions) of duration $<$ 2 days and their association with interplanetary structures are investigated. It is found that, most likely, plasma compression regions between subsequent corotating high-speed streams cause peaks, while heliospheric current sheet crossing cause the majority of the depressions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا