Do you want to publish a course? Click here

Doping a semiconductor to create an unconventional metal

131   0   0.0 ( 0 )
 Added by John DiTusa
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the undercompensated Kondo effect, where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.



rate research

Read More

The physics of weak itinerant ferromagnets is challenging due to their small magnetic moments and the ambiguous role of local interactions governing their electronic properties, many of which violate Fermi liquid theory. While magnetic fluctuations play an important role in the materials unusual electronic states, the nature of these fluctuations and the paradigms through which they arise remain debated. Here we use inelastic neutron scattering to study magnetic fluctuations in the canonical weak itinerant ferromagnet MnSi. Data reveal that short-wavelength magnons continue to propagate until a mode crossing predicted for strongly interacting quasiparticles is reached, and the local susceptibility peaks at a coherence energy predicted for a correlated Hund metal by first-principles many-body theory. Scattering between electrons and orbital and spin fluctuations in MnSi can be understood at the local level to generate non-Fermi liquid character. These results provide crucial insight into the role of interorbital Hunds exchange within the broader class of enigmatic multiband itinerant, weak ferromagnets.
We report a systematic study of the $5d$-electron-doped system Ce(Fe$_{1-x}$Ir$_x$)$_2$Al$_{10}$ ($0 leq x leq 0.15$). With increasing $x$, the orthorhombic $b$~axis decreases slightly while accompanying changes in $a$ and $c$ leave the unit cell volume almost unchanged. Inelastic neutron scattering, along with thermal and transport measurements, reveal that for the Kondo semiconductor CeFe$_2$Al$_{10}$, the low-temperature energy gap which is proposed to be a consequence of strong $c mhyphen f$ hybridization, is suppressed by a small amount of Ir substitution for Fe, and that the system adopts a metallic ground state with an increase in the density of states at the Fermi level. The charge or transport gap collapses (at $x=$~0.04) faster than the spin gap with Ir substitution. Magnetic susceptibility, heat capacity, and muon spin relaxation measurements demonstrate that the system undergoes long-range antiferromagnetic order below a Neel temperature, $T_{mathrm{N}}$, of 3.1(2)~K for $x = 0.15$. The ordered moment is estimated to be smaller than 0.07(1)~$mu_mathrm{B}$/Ce although the trivalent state of Ce is confirmed by Ce L$_3$-edge x-ray absorption near edge spectroscopy. It is suggested that the $c mhyphen f$ hybridization gap, which plays an important role in the unusually high ordering temperatures observed in Ce$T_2$Al$_{10}$ ($T$ = Ru and Os), may not be necessary for the onset of magnetic order with a low $T_{mathrm{N}}$ seen here in Ce(Fe$_{1-x}$Ir$_x$)$_2$Al$_{10}$.
Narrow-gap higher mobility semiconducting alloys In_{1-x}Mn_{x}Sb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In_{0.98}Mn_{0.02}Sb was detected by the observation of clear hysteresis loops up to room temperature in direct magnetization measurements. An unconventional (reentrant) magnetization versus temperature behavior has been found. We explained the observed peculiarities within the frameworks of recent models which suggest that a strong temperature dependence of the carrier density is a crucial parameter determining carrier-mediated ferromagnetism of (III,Mn)V semiconductors. The correlation between magnetic states and transport properties of the sample has been discussed. The contact spectroscopy method is used to investigate a band structure of (InMn)Sb near the Fermi level. Measurements of the degree of charge current spin polarization have been carried out using the point contact Andreev reflection (AR) spectroscopy. The AR data are analyzed by introducing a quasiparticle spectrum broadening, which is likely to be related to magnetic scattering in the contact. The AR spectroscopy data argued that at low temperature the sample is decomposed on metallic ferromagnetic clusters with relatively high spin polarization of charge carriers (up to 65% at 4.2K) within a cluster.
The narrow gap semiconductor FeSi owes its strong paramagnetism to electron-correlation effects. Partial Co substitution for Fe produces a spin-polarized doped semiconductor. The spin-polarization causes suppression of the metallic reflectivity and increased scattering of charge carriers, in contrast to what happens in other magnetic semiconductors, where magnetic order reduces the scattering. The loss of metallicity continues progressively even into the fully polarized state, and entails as much as a 25% reduction in average mean-free path. We attribute the observed effect to a deepening of the potential wells presented by the randomly distributed Co atoms to the majority spin carriers. This mechanism inverts the sequence of steps for dealing with disorder and interactions from that in the classic Altshuler Aronov approach - where disorder amplifies the Coulomb interaction between carriers - in that here, the Coulomb interaction leads to spin polarization which in turn amplifies the disorder-induced scattering.
CoSn is a Pauli paramagnet with relatively flat d-bands centered about 100 meV below the Fermi energy Ef. Single crystals of CoSn lightly doped with Fe, In, or Ni are investigated using x-ray and neutron scattering, magnetic susceptibility and magnetization, ac susceptibility, specific heat and resistivity measurements. Within the rigid band approximation, hole doping with a few percent of Fe or In should move the flat bands closer to Ef, whereas electron doping with Ni should move the flat bands further away from Ef. We provide evidence that this indeed occurs. Fe and In doping drive CoSn toward magnetism, while Ni doping suppresses CoSns already weak magnetic response. The resulting ground state is different for Fe versus In doping. For Fe-doped crystals, Co1-xFexSn, with 0.02 < x < 0.27, the magnetic and specific heat data are consistent with the formation of a spin glass, with a glass transition temperature, Tg, ranging from 1 K for x=0.02 to 10 K for x= 0.27. Powder and single crystal neutron diffraction found no evidence of long-range magnetic order below Tg with x = 0.17. For In-doped crystals, CoSn1-yIny, both the magnetic susceptibility and the Sommerfeld coefficient, gamma, increase substantially relative to pure CoSn, but with no clear indication of a magnetic transition for 0.05 < y < 0.2. CoSn crystals doped with Ni (Co0.93Ni0.07Sn) have a significantly smaller magnetic susceptibility and gamma than pure CoSn, consistent with the flat bands further from Ef.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا