No Arabic abstract
We report the discovery of two sources at z=3.867 and z=3.427 that exhibit powerful starburst and AGN activities. They benefit from data from radio to X rays from the CFHTLS-D1/SWIRE/XMDS surveys. Follow-up optical and near-infrared spectroscopy, and millimeter IRAM/MAMBO observations are also available. We performed an analysis of their spectral energy distributions to understand the origin of their emission and constrain their luminosities. A comparison with other composite systems at similar redshifts from the literature is also presented. The AGN and starburst bolometric luminosities are ~10^13 Lsun. The AGN emission dominates at X ray, optical, mid-infrared wavelengths, and probably in the radio. The starburst emission dominates in the far-infrared. The estimated star formation rates range from 500 to 3000Msun/yr. The AGN near-infrared and X ray emissions are heavily obscured in both sources with an estimated dust extinction Av>4, and Compton-thick gas column densities. The two sources are the most obscured and most luminous AGNs detected at millimeter wavelengths currently known. The sources presented in this work are heavily obscured QSOs, but their properties are not fully explained by the standard AGN unification model. In one source, the ultraviolet and optical spectra suggest the presence of outflowing gas and shocks, and both sources show emission from hot dust, most likely in the vicinity of the nucleus. Evidence of moderate AGN-driven radio activity is found in both sources. The two sources lie on the local M_BH-M_bulge relation. To remain on this relation, their star formation rate has to decrease. Our results support evolutionary models that invoke radio feedback as star formation quenching mechanism, and suggest that such a mechanism might play a major role also in powerful AGNs.
We present an analysis of the kinematics and excitation of the warm ionized gas in two obscured, powerful quasars at z>=3.5 from the SWIRE survey, SWIRE J022513.90-043419.9 and SWIRE J022550.67-042142, based on imaging spectroscopy on the VLT. Line ratios in both targets are consistent with luminous narrow-line regions of AGN. SWIRE J022550.67-042142 has very broad (FWHM=2000 km/s), spatially compact [OIII] line emission. SWIRE J022513.90-043419.9 is spatially resolved, has complex line profiles of H-beta and [OIII], including broad wings with blueshifts of up to -1500 km/s relative to the narrow [OIII]5007 component, and widths of up to FWHM=5000 km/s. Estimating the systemic redshift from the narrow H-beta line, as is standard for AGN host galaxies, implies that a significant fraction of the molecular gas is blueshifted by up to ~ -1000 km/s relative to the systemic velocity. Thus the molecular gas could be participating in the outflow. Significant fractions of the ionized and molecular gas reach velocities greater than the escape velocity. We compare empirical and modeling constraints for different energy injection mechanisms, such as merging, star formation, and momentum-driven AGN winds. We argue that the radio source is the most likely culprit, in spite of the sources rather modest radio power of 10^25 W/Hz. Such a radio power is not uncommon for intense starburst galaxies at z~2. We discuss these results in light of the co-evolution of AGN and their host galaxy.
Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with a SFR of ~500 Msun/yr. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.
The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured Active Galactic Nuclei (AGN) detected in the CDFS 1Ms observation and their host galaxies. We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. We found that X-ray selected (L_X>10^{42} erg s^{-1}) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (M_*>10^{10} M_sun) and, in 50% of the cases, are also actively forming stars (1/SSFR<t_{Hubble}) in dusty environments. The median L/LEdd value of the active nucleus is between 2% and 10% depending on the assumed M_{BH}/M_{*} ratio. Finally, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of ~30% at z>1 and M_*>3x10^{11} M_sun, a fraction significantly higher than in the local Universe for AGN of similar luminosities.
We study the properties of a sample of 211 heavily-obscured Active Galactic Nucleus (AGN) candidates in the Extended Chandra Deep Field-South selecting objects with f_24/f_R>1000 and R-K>4.5. Of these, 18 were detected in X-rays and found to be obscured AGN with neutral hydrogen column densities of ~10^23 cm^-2. In the X-ray undetected sample, the following evidence suggests a large fraction of heavily-obscured (Compton Thick) AGN: (i) The stacked X-ray signal of the sample is strong, with an observed ratio of soft to hard X-ray counts consistent with a population of ~90% heavily obscured AGN combined with 10% star-forming galaxies. (ii) The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of N_H>5x10^24 cm^-2. (iii) The Spitzer near- and mid-IR colors of these sources are consistent with those of the X-ray-detected sample if the effects of dust self-absorption are considered. Spectral fitting to the rest-frame UV/optical light (dominated by the host galaxy) returns stellar masses of ~10^11 M_sun and <E(B-V)> =0.5, and reveals evidence for a significant young stellar population, indicating that these sources are experiencing considerable star-formation. This sample of heavily-obscured AGN candidates implies a space density at z~2 of ~10^-5 Mpc^-3, finding a strong evolution in the number of L_X>10^44 erg/s sources from z=1.5 to 2.5, possibly consistent with a short-lived heavily-obscured phase before an unobscured quasar is visible.
The standard AGN-galaxy co-evolutionary scenario predicts a phase of deeply buried supermassive black hole growth coexisting with a starburst (SB) before feedback phenomena deplete the cold molecular gas reservoir of the galaxy and an optically luminous QSO is revealed (SB-QSO evolutionary sequence). The aim of this work is to measure the cold gas reservoir of three highly obscured QSOs to test if their gas fraction is similar to that of sub-millimeter galaxies (SMGs), as expected by some models, and place these measurements in the context of the SB-QSO framework. We target CO(1-0) transition in BzK4892, a Compton Thick (CT) QSO at z=2.6, CO(1-0) in BzK8608 and CO(2-1) in CDF153, two highly obscured QSOs at z=2.5 and z=1.5, respectively. For all these targets, we place 3$sigma$ upper limits on the CO, with $L_{CO} < (1.5div 2.8)times 10^{10}$ K km/s pc$^2$. We also compare the molecular gas conditions of our targets with those of other systems at z>1, considering normal star forming galaxies and SMGs, unobscured and obscured AGN from the literature. For the AGN samples, we provide an updated and (almost) complete collection of targets with CO follow-up. BzK4892 displays a high star formation efficiency (SFE$=L_{IR}/L_{CO}>410$ L$_{odot}$/(K km s$^{-1}$ pc$^2$)) and a gas fraction $f_{gas}<0.1$. Less stringent constraints are derived for the other two targets ($f_{gas}<0.5$ and SFE$>10$). From the comparison with literature data, we found that a) obscured AGN at z>1 are associated with higher SFE and lower $f_{gas}$ with respect to star forming galaxies; b) mildly and highly obscured active galaxies have comparable gas fractions; c) the SFE of CT and obscured AGN are similar to those of unobscured AGN. Within the SB-QSO framework, these findings could be consistent with a scenario where feedback can impact the host galaxy already from the early phases of the SB-QSO sequence.