Do you want to publish a course? Click here

High-resolution X-ray spectroscopy of the evolving shock in the 2006 outburst of RS Ophiuchi

152   0   0.0 ( 0 )
 Added by Jan-Uwe Ness
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The evolution of the 2006 outburst of the recurrent nova RS Ophiuchi was followed with 12 X-ray grating observations with Chandra and XMM-Newton. We present detailed spectral analyses using two independent approaches. From the best dataset, taken on day 13.8 after outburst, we reconstruct the temperature distribution and derive elemental abundances. We find evidence for at least two distinct temperature components on day 13.8 and a reduction of temperature with time. The X-ray flux decreases as a power-law, and the power-law index changes from -5/3 to -8/3 around day 70 after outburst. This can be explained by different decay mechanisms for the hot and cool components. The decay of the hot component and the decrease in temperature are consistent with radiative cooling, while the decay of the cool component can be explained by the expansion of the ejecta. We find overabundances of N and of alpha-elements, which could either represent the composition of the secondary that provides the accreted material or that of the ejecta. The N overabundance indicates CNO-cycled material. From comparisons to abundances for the secondary taken from the literature, we conclude that 20-40% of the observed nitrogen could originate from the outburst. The overabundance of the alpha-elements is not typical for stars of the spectral type of the secondary in the RS Oph system, and white dwarf material might have been mixed into the ejecta. However, no direct measurements of the alpha-elements in the secondary are available, and the continuous accretion may have changed the observable surface composition.



rate research

Read More

Near-infrared spectra are presented for the recent 2006 outburst of the recurrent nova RS Ophiuchi (RS Oph).We report the rare detection of an infrared shock wave as the nova ejecta plows into the pre-existing wind of the secondary in the RS Oph system consisting of a white dwarf (WD) primary and a red giant secondary. The evolution of the shock is traced through a free expansion stage to a decelerative phase. The behavior of the shock velocity with time is found to be broadly consistent with current shock models. The present observations also imply that the WD in the RS Oph system has a high mass indicating that it could be a potential SNIa candidate. We also discuss the results from a recent study showing that the near-IR continuum from the recent RS Oph eruption does not originate in an expanding fireball. However, the present work shows that the IR line emission does have an origin in an expanding shock wave.
127 - N. M. H. Vaytet 2011
Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.
Optical spectra of the 2006 outburst of RS Ophiuchi beginning one day after discovery to over a year after the outburst are presented here. The spectral evolution is found to be similar to that in previous outbursts. The early phase spectra are dominated by hydrogen and helium (I & II) lines. Coronal and nebular lines appear in the later phases. Emission line widths are found to narrow with time, which is interpreted as a shock expanding into the red giant wind. Using the photoionisation code CLOUDY, spectra at nine epochs spanning 14 months after the outburst peak, thus covering a broad range of ionisation and excitation levels in the ejecta, are modelled. The best-fit model parameters indicate the presence of a hot white dwarf source with a roughly constant luminosity of 1.26 x 10^{37} erg/s. During first three months, the abundances (by number) of He, N, O, Ne, Ar, Fe, Ca, S and Ni are found above solar abundances; abundances of these elements decreased in the later phase. Also presented are spectra obtained during quiescence. Photoionisation model of the quiescence spectrum indicates the presence of a low luminosity accretion disk. The helium abundance is found to be subsolar at quiescence.
Swift X-ray observations of the ~60 day super-soft phase of the recurrent nova RS Ophiuchi 2006 show the progress of nuclear burning on the white dwarf in exquisite detail. First seen 26 days after the optical outburst, this phase started with extreme variability likely due to variable absorption, although intrinsic white dwarf variations are not excluded. About 32 days later, a steady decline in count-rate set in. NLTE model atmosphere spectral fits during the super-soft phase show that the effective temperature of the white dwarf increases from ~65 eV to ~90 eV during the extreme variability phase, falling slowly after about day 60 and more rapidly after day 80. The bolometric luminosity is seen to be approximately constant and close to Eddington from day 45 up to day 60, the subsequent decline possibly signalling the end of extensive nuclear burning. Before the decline, a multiply-periodic, ~35 s modulation of the soft X-rays was present and may be the signature of a nuclear fusion driven instability. Our measurements are consistent with a white dwarf mass near the Chandrasekhar limit; combined with a deduced accumulation of mass transferred from its binary companion, this leads us to suggest RS Oph is a strong candidate for a future supernova explosion. The main uncertainty now is whether the WD is the CO type necessary for a SN Ia. This may be confirmed by detailed abundance analyses of spectroscopic data from the outbursts.
Chandra/HETG observations of the recurrent nova RS Ophiuchi at day 13.9 of its 2006 outburst reveal a spectrum covering a large range in plasma temperature and characterized by asymmetric and blue-shifted emission lines. We investigate the origin of these asymmetries and broadening of emission lines. We perform 3-D hydrodynamic simulations of the blast wave from the 2006 outburst, propagating through the inhomogeneous CSM. The model takes into account the thermal conduction (including the effects of heat flux saturation) and the radiative cooling. From the simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra/HETG. Our model reproduces the observed X-ray emission in a natural way if the CSM in which the outburst occurred is characterized by an equatorial density enhancement. Our ``best-fit model predicts that most of the early X-ray emission originates from a small region propagating in the direction perpendicular to the line-of-sight and localized just behind the interaction front between the blast wave and the equatorial density enhancement. The model predicts asymmetric and blue-shifted line profiles remarkably similar to those observed. These asymmetries are due to substantial X-ray absorption of red-shifted emission by ejecta material. The comparison of high quality data of Chandra/HETG with detailed hydrodynamic modeling has allowed us to unveil, for the first time, the details of the structure emitting in the X-ray band in early phases of the outburst evolution, contributing to a better understanding of the physics of interactions between nova blasts and CSM in recurrent novae. This may have implications for whether or not RS Ophiuchi is a Type Ia SN progenitor system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا