Do you want to publish a course? Click here

The bi-Hamiltonian structure and new solutions of KdV6 equation

124   0   0.0 ( 0 )
 Added by Yunbo Zeng
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the KdV6 equation recently studied in [1,2] is equivalent to the Rosochatius deformation of KdV equation with self-consistent sources (RD-KdVESCS) recently presented in [9]. The $t$-type bi-Hamiltonian formalism of KdV6 equation (RD-KdVESCS) is constructed by taking $x$ as evolution parameter. Some new solutions of KdV6 equation, such as soliton, positon and negaton solution, are presented.



rate research

Read More

We consider equations in the modified KdV (mKdV) hierarchy and make use of the Miura transformation to construct expressions for their Lax pair. We derive a Lagrangian-based approach to study the bi-Hamiltonian structure of the mKdV equations. We also show that the complex modified KdV (cmKdV) equation follows from the action principle to have a Lagrangian representation. This representation not only provides a basis to write the cmKdV equation in the canonical form endowed with an appropriate Poisson structure but also help us construct a semianalytical solution of it. The solution obtained by us may serve as a useful guide for purely numerical routines which are currently being used to solve the cmKdV eqution.
181 - M.V. Pavlov , R.F. Vitolo 2018
The Oriented Associativity equation plays a fundamental role in the theory of Integrable Systems. In this paper we prove that the equation, besides being Hamiltonian with respect to a first-order Hamiltonian operator, has a third-order non-local homogeneous Hamiltonian operator belonging to a class which has been recently studied, thus providing a highly non-trivial example in that class and showing intriguing connections with algebraic geometry.
129 - Yuqin Yao , Yehui Huang , Yuan Wei 2011
When both Hamiltonian operators of a bi-Hamiltonian system are pure differential operators, we show that the generalized Kupershmidt deformation (GKD) developed from the Kupershmidt deformation in cite{kd} offers an useful way to construct new integrable system starting from the bi-Hamiltonian system. We construct some new integrable systems by means of the generalized Kupershmidt deformation in the cases of Harry Dym hierarchy, classical Boussinesq hierarchy and coupled KdV hierarchy. We show that the GKD of Harry Dym equation, GKD of classical Boussinesq equation and GKD of coupled KdV equation are equivalent to the new integrable Rosochatius deformations of these soliton equations with self-consistent sources. We present the Lax Pair for these new systems. Therefore the generalized Kupershmidt deformation provides a new way to construct new integrable systems from bi-Hamiltonian systems and also offers a new approach to obtain the Rosochatius deformation of soliton equation with self-consistent sources.
We first derive an integrable deformed hierarchy of short pulse equation and their Lax representation. Then we concentrated on the solution of integrable deformed short pulse equation (IDSPE). By proposing a generalized reciprocal transformation, we find a new integrable deformed sine-Gordon equation (IDSGE) and its Lax representation. The multisoliton solutions, negaton solutions and positon solutions for the IDSGE and the N-loop soliton solutions, N-negaton and N-positon solutions for the IDSPE are presented. In the reduced case the new N-positon solutions and N-negaton solutions for short pulse equation are obtained.
We define a new class of solutions to the WDVV associativity equations. This class is determined by the property that one of the commuting PDEs associated with such a WDVV solution is linearly degenerate. We reduce the problem of classifying such solutions of the WDVV equations to the particular case of the so-called algebraic Riccati equation and, in this way, arrive at a complete classification of irreducible solutions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا