Do you want to publish a course? Click here

The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation

134   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We suggest that a high proportion of brown dwarfs are formed by gravitational fragmentation of massive extended discs around Sun-like stars. Such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapidly. By performing an ensemble of radiation-hydrodynamic simulations, we show that such discs fragment within a few thousand years, and produce mainlybrown dwarf (BDs) stars, but also planetary mass (PM) stars and very low-mass hydrogen-burning (HB) stars. Most of the the PM stars and BDs are ejected by mutual interactions. We analyse the statistical properties of these stars, and compare them with observations. After a few hundred thousand years the Sun-like primary is typically left with a close low-mass HB companion, and two much wider companions: a low-mass HB star and a BD star, or a BD-BD binary. There is a BD desert extending out to at least ~100 AU; this is because BDs tend to be formed further out than low-mass HB stars, and then they tend to be scattered even further out, or even into the field. BDs form with discs of a few Mj and radii of a few tens of AU, and they are more likely to retain these discs if they remain bound to the primary star. Binaries form by pairing of the newly-formed stars in the disc, giving a low-mass binary fraction of ~0.16. These binaries include close and wide BD/BD binaries and BD/PM binaries. BDs that remain as companions to Sun-like stars are more likely to be in BD/BD binaries than are BDs ejected into the field. Disc fragmentation is a robust mechanism; even if only a small fraction of Sun-like stars host the required massive extended discs,this mechanism can produce all the PM stars observed, most of the BD stars, and a significant proportion of the very low-mass HB stars.



rate research

Read More

We suggest that a high proportion of brown dwarfs are formed by gravitational fragmentation of massive, extended discs around Sun-like stars. We argue that such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapidly. By performing an ensemble of radiation-hydrodynamic simulations, we show that such discs typically fragment within a few thousand years to produce mainly brown dwarfs (including planetary-mass brown dwarfs) and low-mass hydrogen-burning stars. Subsequently most of the brown dwarfs are ejected by mutual interactions. We analyse the properties of these objects that form by disc fragmentation, and compare them with observations.
207 - Michael C. Liu 2008
Precise measurements of the fundamental properties of low-mass stars and brown dwarfs are key to understanding the physics underlying their formation and evolution. While there has been great progress over the last decade in studying the bulk spectrophotometric properties of low-mass objects, direct determination of their masses, radii, and temperatures have been very sparse. Thus, theoretical predictions of low-mass evolution and ultracool atmospheres remain to be rigorously tested. The situation is alarming given that such models are widely used, from the determination of the low-mass end of the initial mass function to the characterization of exoplanets. An increasing number of mass, radius, and age determinations are placing critical constraints on the physics of low-mass objects. A wide variety of approaches are being pursued, including eclipsing binary studies, astrometric-spectroscopic orbital solutions, interferometry, and characterization of benchmark systems. In parallel, many more systems suitable for concerted study are now being found, thanks to new capabilities spanning both the very widest (all-sky surveys) and very narrowest (diffraction-limited adaptive optics) areas of the sky. This Cool Stars 15 splinter session highlighted the current successes and limitations of this rapidly growing area of precision astrophysics.
It is estimated that ~60% of all stars (including brown dwarfs) have masses below 0.2Msun. Currently, there is no consensus on how these objects form. I will briefly review the four main theories for the formation of low-mass objects: turbulent fragmentation, ejection of protostellar embryos, disc fragmentation, and photo-erosion of prestellar cores. I will focus on the disc fragmentation theory and discuss how it addresses critical observational constraints, i.e. the low-mass initial mass function, the brown dwarf desert, and the binary statistics of low-mass stars and brown dwarfs. I will examine whether observations may be used to distinguish between different formation mechanisms, and give a few examples of systems that strongly favour a specific formation scenario. Finally, I will argue that it is likely that all mechanisms may play a role in low-mass star and brown dwarf formation.
We presented 15 new T dwarfs that were selected from UKIRT Infrared Deep Sky Survey, Visible and Infrared Survey Telescope for Astronomy, and Wide-field Infrared Survey Explorer surveys, and confirmed with optical to near infrared spectra obtained with the Very Large Telescope and the Gran Telescopio Canarias. One of these new T dwarfs is mildly metal-poor with slightly suppressed $K$-band flux. We presented a new X-shooter spectrum of a known benchmark sdT5.5 subdwarf, HIP 73786B. To better understand observational properties of brown dwarfs, we discussed transition zones (mass ranges) with low-rate hydrogen, lithium, and deuterium burning in brown dwarf population. The hydrogen burning transition zone is also the substellar transition zone that separates very low-mass stars, transitional, and degenerate brown dwarfs. Transitional brown dwarfs have been discussed in previous works of the Primeval series. Degenerate brown dwarfs without hydrogen fusion are the majority of brown dwarfs. Metal-poor degenerate brown dwarfs of the Galactic thick disc and halo have become T5+ subdwarfs. We selected 41 T5+ subdwarfs from the literature by their suppressed $K$-band flux. We studied the spectral-type - colour correlations, spectral-type - absolute magnitude correlations, colour-colour plots, and HR diagrams of T5+ subdwarfs, in comparison to these of L-T dwarfs and L subdwarfs. We discussed the T5+ subdwarf discovery capability of deep sky surveys in the 2020s.
Direct imaging searches have revealed many very low-mass objects, including a small number of planetary mass objects, as wide-orbit companions to young stars. The formation mechanism of these objects remains uncertain. In this paper we present the predictions of the disc fragmentation model regarding the properties of the discs around such low-mass objects. We find that the discs around objects that have formed by fragmentation in discs hosted by Sun-like stars (referred to as parent discs and parent stars) are more massive than expected from the ${M}_{rm disc}-M_*$ relation (which is derived for stars with masses $M_*>0.2 {rm M}_{odot}$). Accordingly, the accretion rates onto these objects are also higher than expected from the $dot{M}_*-M_*$ relation. Moreover there is no significant correlation between the mass of the brown dwarf or planet with the mass of its disc nor with the accretion rate from the disc onto it. The discs around objects that form by disc fragmentation have larger than expected masses as they accrete gas from the disc of their parent star during the first few kyr after they form. The amount of gas that they accrete and therefore their mass depend on how they move in their parent disc and how they interact with it. Observations of disc masses and accretion rates onto very low-mass objects are consistent with the predictions of the disc fragmentation model. Future observations (e.g. by ALMA) of disc masses and accretion rates onto substellar objects that have even lower masses (young planets and young, low-mass brown dwarfs), where the scaling relations predicted by the disc fragmentation model diverge significantly from the corresponding relations established for higher-mass stars, will test the predictions of this model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا