No Arabic abstract
We present narrowband images of the gravitational lens system Q~2237+0305 made with the Nordic Optical Telescope in eight different filters covering the wavelength interval 3510-8130 AA. Using point-spread function photometry fitting we have derived the difference in magnitude versus wavelength between the four images of Q~2237+0305. At $lambda=4110$ AA, the wavelength range covered by the Stromgren-v filter coincides with the position and width of the CIV emission line. This allows us to determine the existence of microlensing in the continuum and not in the emission lines for two images of the quasar. Moreover, the brightness of image A shows a significant variation with wavelength which can only be explained as consequence of chromatic microlensing. To perform a complete analysis of this chromatic event our observations were used together with Optical Gravitational Lensing Experiment light curves. Both data sets cannot be reproduced by the simple phenomenology described under the caustic crossing approximation; using more realistic representations of microlensing at high optical depth, we found solutions consistent with simple thin disk models ($r_{s}varpropto lambda^{4/3}$); however, other accretion disk size-wavelength relationships also lead to good solutions. New chromatic events from the ongoing narrow band photometric monitoring of Q~2237+0305 are needed to accurately constrain the physical properties of the accretion disk for this system.
The Einstein Cross, Q~2237+0305, has been photometrically observed in four bands on two successive nights at NOT (La Palma, Spain) in October 1995. Three independent algorithms have been used to analyse the data: an automatic image decomposition technique, a CLEAN algorithm and the new MCS deconvolution code. The photometric and astrometric results obtained with the three methods are presented. No photometric variations were found in the four quasar images. Comparison of the photometry from the three techniques shows that both systematic and random errors affect each method. When the seeing is worse than 1.0, the errors from the automatic image decomposition technique and the Clean algorithm tend to be large (0.04-0.1 magnitudes) while the deconvolution code still gives accurate results (1{sigma} error below 0.04) even for frames with seeing as bad as 1.7. Reddening is observed in the quasar images and is found to be compatible with either extinction from the lensing galaxy or colour dependent microlensing. The photometric accuracy depends on the light distribution used to model the lensing galaxy. In particular, using a numerical galaxy model, as done with the MCS algorithm, makes the method less seeing dependent. Another advantage of using a numerical model is that eventual non-homogeneous structures in the galaxy can be modeled. Finally, we propose an observational strategy for a future photometric monitoring of the Einstein Cross.
We present results from 2 years of monitoring of Huchras lens (QSO 2237+0305) with the 1.3 m Warsaw telescope on Las Campanas, Chile. Photometry in the V band was done using a newly developed method for image subtraction. Reliable subtraction without Fourier division removes all complexities associated with the presence of a bright lensing galaxy. With positions of lensed images adopted from HST measurements it is relatively easy to fit the variable part of the flux in this system, as opposed to modeling of the underlying galaxy. For the first time we observed smooth light variation over a period of a few months, which can be naturally attributed to microlensing. We also describe automated software capable of real time analysis of the images of QSO 2237+0305. It is expected that starting from the next observing season in 1999 an alert system will be implemented for high amplification events (HAE) in this object. Time sampling and photometric accuracy achieved should be sufficient for early detection of caustic crossings.
We present the continuation of our long-term spectroscopic monitoring of the gravitationally lensed quasar QSO 2237+0305. We investigate the chromatic variations observed in the UV/optical continuum of both quasar images A and B, and compare them with numerical simulations to infer the energy profile of the quasar accretion disk. Our procedure combines the microlensing ray-shooting technique with Bayesian analysis, and derives probability distributions for the source sizes as a function of wavelength. We find that the effective caustic crossing timescale is 4.0+/-1.0 months. Using a robust prior on the effective transverse velocity, we find that the source responsible for the UV/optical continuum has an energy profile well reproduced by a power-law R lambda^{zeta} with zeta=1.2+/-0.3, where R is the source size responsible for the emission at wavelength lambda. This is the first accurate, model-independent determination of the energy profile of a quasar accretion disk on such small scales.
In 1998 The Optical Gravitational Lensing Experiment (OGLE) successfully implemented automated data reductions for QSO 2237+0305. Using a new image subtraction method we achieved a differential photometry scatter of 1-5 % for images A-D respectively. Combined with a time sampling of 1-2 times a week this is sufficient for early detection of caustic crossings. Nearly real time photometry of QSO 2237+0305 is available from the OGLE web site http://www.astro.princeton.edu/~ogle/ogle2/huchra.html . During the 1999 observing season, the apparent V magnitude of the A, B, C and D images changed by 0.50, 0.15, 0.65 and 0.35 mag, respectively. Most likely however, none of the microlensing events involved a caustic crossing. The most rapid variation was 0.25 mag in 30 days, observed for image C. The alert system will continue to be active in the next observing season from late April until September 2000, when OGLE suspends operation for an upgrade. Observations will resume for season of 2001.
Due to the finite size of the disk and the temperature fluctuations producing the variability, microlensing changes the actual time delays between images of strongly lensed AGN on the $sim$day(s) light-crossing time scale of the emission region. This microlensing-induced time delay depends on the disk model, primarily the disk size $R_mathrm{disk}$ which has been found to be larger than predicted by the thin-disk model. In this work, we propose that light curves measured in different bands will give different time delays since $R_mathrm{disk}$ is a function of wavelength, and by measuring the time delay differences between bands, one can 1) directly verify such an new effect; 2) test the thin-disk model of quasars. For the second goal, our method can avoid the potential inconsistency between multi-band light curves that may bias the results by continuum reverberation mapping. We conduct a simulation based on a PG 1115+080-like lensed quasar, calculating the theoretical distributions of time delay differences between two bands: u and i centered around 354nm and 780nm, under and beyond the thin-disk model, respectively. Assuming the disk size is twice larger than the standard one, we find that with a precision of 2 days in the time delay difference measurements, the microlensing time delay effect can be verified with $sim4$ measurements while with $sim35$ measurements the standard model can be excluded. This approach could be realized in the ongoing and upcoming multi-band wide-field surveys with follow-up observations.