Do you want to publish a course? Click here

Synthesizing and characterization of hole doped nickel based superconductor (La$_{1-x}$Sr$_{x}$)NiAsO

248   0   0.0 ( 0 )
 Added by Lei Fang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the synthesizing and characterization of the hole doped Ni-based superconductor ($La_{1-x}Sr_{x})NiAsO$. By substituting La with Sr, the superconducting transition temperature $T_c$ is increased from 2.4 K of the parent phase $LaNiAsO$ to 3.7 K at the doping levels x= 0.1 - 0.2. The curve $T_c$ versus hole concentration shows a symmetric behavior as the electron doped samples $LaNiAs(O_{1-x}F_{x})$. The normal state resistivity in Ni-based samples shows a good metallic behavior and reveals the absence of spin density wave induced anomaly which appears in the Fe-based system at about 150 K. Hall effect measurements indicate that the electron conduction in the parent phase $LaNiAsO$ is dominated by electron-like charge carriers, while with more Sr doping, a hole-like band will emerge and finally prevail over the conduction, such a phenomenon reflects that the Fermi surface of $LaNiAsO$ comprises of electron pockets and hole pockets, thus the sign of charge carriers could be changed once the contribution of hole pockets overwhelms that of electron pockets. Magnetoresistance measurements and the violation of Kohler rule provide further proof that multiband effect dominate the normal state transport of ($La_{1-x}Sr_{x})NiAsO$.



rate research

Read More

We investigate the hole and lattice dynamics in a prototypical high temperature superconducting system La{2-x}Sr{x}CuO{4} using infrared spectroscopy. By exploring the anisotropy in the electronic response of CuO2 planes we show that our results support the notion of stripes. Nevertheless, charge ordering effects are not apparent in the phonon spectra. All crystals show only the expected infrared active modes for orthorhombic phases without evidence for additional peaks that may be indicative of static charge ordering. Strong electron-phonon interaction manifests itself through the Fano lineshape of several phonon modes. This analysis reveals anisotropic electron-phonon coupling across the phase diagram, including superconducting crystals. Due to the ubiquity of the CuO2 plane, these results may have implications for other high Tc superconductors.
We present results of magnetic neutron diffraction experiments on the co-doped super-oxygenated La(2-x)Sr(x)CuO(4+y) (LSCO+O) system with x=0.09. The spin-density wave has been studied and we find long-range incommensurate antiferromagnetic order below T_N coinciding with the superconducting ordering temperature T_c=40 K. The incommensurability value is consistent with a hole-doping of n_h~1/8, but in contrast to non-superoxygenated La(2-x)Sr(x)CuO(4) with hole-doping close to n_h ~ 1/8 the magnetic order parameter is not field-dependent. We attribute this to the magnetic order being fully developed in LSCO+O as in the other striped lanthanum-cuprate systems.
Stripe order in La{2-x}Sr{x}NiO4 beyond x = 1/3 was studied with neutron scattering technique. At low temperatures, all the samples exhibit hole stripe order. Incommensurability epsilon of the stripe order is approximately linear in the hole concentration n_h = x + 2delta up to x = 1/2, where delta denotes the off-stoichiometry of oxygen atoms. The charge and spin ordering temperatures exhibit maxima at n_h = 1/3, and both decrease beyond n_h > 1/3. For 1/3 < n_h < 1/2, the stripe ordering consists of the mixture of the epsilon = 1/3 stripe order and the n_h = 1/2 charge/spin order.
The thermopower S of the high-Tc superconductor La(1.6-x)Nd(0.4)Sr(x)CuO(4) was measured as a function of temperature T near its pseudogap critical point, the critical hole doping p* where the pseudogap temperature T* goes to zero. Just above p*, S/T varies as ln(1/T) over a decade of temperature. Below p*, S/T undergoes a large increase below T*. As with the temperature dependence of the resistivity, which is linear just above p* and undergoes a large upturn below T*, these are typical signatures of a quantum phase transition. This suggests that p* is a quantum critical point below which some order sets in, causing a reconstruction of the Fermi surface, whose fluctuations are presumably responsible for the linear-T resistivity and logarithmic thermopower. We discuss the possibility that this order is the stripe order known to exist in this material.
We successfully synthesized the nickel-based compound GdONiBi with superconducting transition temperature about 4.5 K. By partially substituting the element Gd with Sr to introduce holes into the material, we got new superconductor Gd0.9Sr0.1ONiBi with critical temperature about 4.7 K. The normal state resistivity in nickel-based samples shows a metallic behavior. The magnetoresistance measurements show a different behavior compared to those in iron-based compounds which indicates that the mechanism in the two kinds of superconductors maybe different.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا