Do you want to publish a course? Click here

Sequential pivotal mechanisms for public project problems

397   0   0.0 ( 0 )
 Added by Krzysztof R. Apt
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

It is well-known that for several natural decision problems no budget balanced Groves mechanisms exist. This has motivated recent research on designing variants of feasible Groves mechanisms (termed as `redistribution of VCG (Vickrey-Clarke-Groves) payments) that generate reduced deficit. With this in mind, we study sequential mechanisms and consider optimal strategies that could reduce the deficit resulting under the simultaneous mechanism. We show that such strategies exist for the sequential pivotal mechanism of the well-known public project problem. We also exhibit an optimal strategy with the property that a maximal social welfare is generated when each player follows it. Finally, we show that these strategies can be achieved by an implementation in Nash equilibrium.



rate research

Read More

We provide a characterization of revenue-optimal dynamic mechanisms in settings where a monopolist sells k items over k periods to a buyer who realizes his value for item i in the beginning of period i. We require that the mechanism satisfies a strong individual rationality constraint, requiring that the stage utility of each agent be positive during each period. We show that the optimum mechanism can be computed by solving a nested sequence of static (single-period) mechanisms that optimize a tradeoff between the surplus of the allocation and the buyers utility. We also provide a simple dynamic mechanism that obtains at least half of the optimal revenue. The mechanism either ignores history and posts the optimal monopoly price in each period, or allocates with a probability that is independent of the current report of the agent and is based only on previous reports. Our characterization extends to multi-agent auctions. We also formulate a discounted infinite horizon version of the problem, where we study the performance of Markov mechanisms.
Mechanism design is addressed in the context of fair allocations of indivisible goods with monetary compensation. Motivated by a real-world social choice problem, mechanisms with verification are considered in a setting where (i) agents declarations on allocated goods can be fully verified before payments are performed, and where (ii) verification is not used to punish agents whose declarations resulted in incorrect ones. Within this setting, a mechanism is designed that is shown to be truthful, efficient, and budget-balanced, and where agents utilities are fairly determined by the Shapley value of suitable coalitional games. The proposed mechanism is however shown to be #P-complete. Thus, to deal with applications with many agents involved, two polynomial-time randomized variants are also proposed: one that is still truthful and efficient, and which is approximately budget-balanced with high probability, and another one that is truthful in expectation, while still budget-balanced and efficient.
Regret minimization has proved to be a versatile tool for tree-form sequential decision making and extensive-form games. In large two-player zero-sum imperfect-information games, modern extensions of counterfactual regret minimization (CFR) are currently the practical state of the art for computing a Nash equilibrium. Most regret-minimization algorithms for tree-form sequential decision making, including CFR, require (i) an exact model of the players decision nodes, observation nodes, and how they are linked, and (ii) full knowledge, at all times t, about the payoffs -- even in parts of the decision space that are not encountered at time t. Recently, there has been growing interest towards relaxing some of those restrictions and making regret minimization applicable to settings for which reinforcement learning methods have traditionally been used -- for example, those in which only black-box access to the environment is available. We give the first, to our knowledge, regret-minimization algorithm that guarantees sublinear regret with high probability even when requirement (i) -- and thus also (ii) -- is dropped. We formalize an online learning setting in which the strategy space is not known to the agent and gets revealed incrementally whenever the agent encounters new decision points. We give an efficient algorithm that achieves $O(T^{3/4})$ regret with high probability for that setting, even when the agent faces an adversarial environment. Our experiments show it significantly outperforms the prior algorithms for the problem, which do not have such guarantees. It can be used in any application for which regret minimization is useful: approximating Nash equilibrium or quantal response equilibrium, approximating coarse correlated equilibrium in multi-player games, learning a best response, learning safe opponent exploitation, and online play against an unknown opponent/environment.
This paper gives a theoretical model for design and analysis of mechanisms for online marketplaces where a bidding dashboard enables the bid-optimization of long-lived agents. We assume that a good allocation algorithm exists when given the true values of the agents and we develop online winner-pays-bid and all-pay mechanisms that implement the same outcome of the algorithm with the aid of a bidding dashboard. The bidding dashboards that we develop work in conjunction with the mechanism to guarantee that bidding according to the dashboard is strategically equivalent (with vanishing utility difference) to bidding truthfully in the sequential truthful implementation of the allocation algorithm. Our dashboard mechanism makes only a single call to the allocation algorithm in each stage.
In large scale collective decision making, social choice is a normative study of how one ought to design a protocol for reaching consensus. However, in instances where the underlying decision space is too large or complex for ordinal voting, standard voting methods of social choice may be impractical. How then can we design a mechanism - preferably decentralized, simple, scalable, and not requiring any special knowledge of the decision space - to reach consensus? We propose sequential deliberation as a natural solution to this problem. In this iterative method, successive pairs of agents bargain over the decision space using the previous decision as a disagreement alternative. We describe the general method and analyze the quality of its outcome when the space of preferences define a median graph. We show that sequential deliberation finds a 1.208- approximation to the optimal social cost on such graphs, coming very close to this value with only a small constant number of agents sampled from the population. We also show lower bounds on simpler classes of mechanisms to justify our design choices. We further show that sequential deliberation is ex-post Pareto efficient and has truthful reporting as an equilibrium of the induced extensive form game. We finally show that for general metric spaces, the second moment of of the distribution of social cost of the outcomes produced by sequential deliberation is also bounded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا