The sixth SuperB Workshop was convened in response to questions posed by the INFN Review Committee, evaluating the SuperB project at the request of INFN. The working groups addressed the capability of a high-luminosity flavor factory that can gather a data sample of 50 to 75 /ab in five years to elucidate New Physics phenomena unearthed at the LHC. This report summarizes the results of the Workshop.
The main physics goals of a high luminosity e+e- flavor factory are discussed, including the possibilities to perform detailed studies of the CKM mechanism of quark mixing, and constrain virtual Higgs and non-standard model particle contributions to the dynamics of rare B_u,d,s decays. The large samples of $D$ mesons and tau leptons produced at a flavor factory will result in improved sensitivities on D mixing and lepton flavor violation searches, respectively. One can also test fundamental concepts such as lepton universality to much greater precision than existing constraints and improve the precision on tests of CPT from B meson decays. Recent developments in accelerator physics have demonstrated the feasibility to build an accelerator that can achieve luminosities of O(10^36) cm^-2 s^-1.
This report presents the results of studies that investigate the physics reach at a Super $B$ factory, an asymmetric-energy $e^+e^-$ collider with a design luminosity of $8 times 10^{35}$ cm$^{-2}$s$^{-1}$, which is around 50 times as large as the peak luminosity achieved by the KEKB collider. The studies focus on flavor physics and CP violation measurements that could be carried out in the LHC era. The physics motivation, key observables, measurement methods and expected precisions are presented.
This report presents the results of studies that investigate the physics reach at a Super B factory, an asymmetric-energy e^+e^- collider with a design luminosity of 5 x 10^35 cm^-2s^-1, which is around 40 times as large as the peak luminosity achieved by the KEKB collider. The studies focus on flavor physics and CP violation measurements that could be carried out in the LHC era. The physics motivation, key observables, measurement methods and expected precisions are presented. The sensitivity studies are a part of the activities associated with the preparation of a Letter of Intent for SuperKEKB, which has been submitted recently.
The KL2016 Workshop is following the Letter of Intent LoI12-15-001 Physics Opportunities with Secondary KL beam at JLab submitted to PAC43 with the main focus on the physics of excited hyperons produced by the Kaon beam on unpolarized and polarized targets with GlueX setup in Hall D. Such studies will broaden a physics program of hadron spectroscopy extending it to the strange sector. The Workshop was organized to get a feedback from the community to strengthen physics motivation of the LoI and prepare a full proposal. Further details about the Workshop can be found on the web page of the conference: http://www.jlab.org/conferences/kl2016/index.html .
These proceedings collect the presentations given at the first three meetings of the INFN Workshop on Monte Carlos, Physics and Simulations at the LHC, held at the Frascati National Laboratories in 2006. The first part of these proceedings contains pedagogical introductions to several basic topics of both theoretical and experimental high pT LHC physics. The second part collects more specialised presentations.