A Comprehensive X-ray Spectral Analysis of the Seyfert 1.5 NGC 3227


Abstract in English

We present results of a 100 ks XMM observation of the Seyfert 1.5 NGC 3227. Our best-fit broadband model to the pn spectrum consists of a moderately flat (photon index 1.57) hard X-ray power-law absorbed by cold gas with N_H = 3 * 10^21 cm^-2, plus a strong soft excess, modeled as a steep power law with a photon index of 3.35, absorbed by cold gas with N_H = 9 * 10^20 cm^-2. The soft excess normalization increases by ~20% in ~20 ks, independently of the hard X-ray component, and the UV continuum, tracked via the OM, also shows a strong increasing trend over the observation, consistent with reprocessing of soft X-ray emission. Warm absorber signatures are evident in both the EPIC and RGS; we model two layers, with log(xi) = 1.2 and 2.9 erg cm s^-1, and with similar column densities (~1-2 * 10^21 cm^-2). The outflow velocities relative to systemic of the high- and low-ionization absorbers are estimated to be -(2060(+240,-170)) km/s and -(420(+430,-190)) km/s, respectively. The Fe K alpha line width FWHM is 7000 +/- 1500 km/s; its inferred radius is consistent with the BLR and with the inner radius of the dust reverberation-mapped by Suganuma et al. An emission feature near 6.0 keV is modeled equally well as a narrow redshifted Fe K line, possibly associated with a disk hot-spot, or as the red wing to a relativistically broadened Fe line profile. Swift-BAT and archival RXTE data suggest at most weak Compton reflection (R <~ 0.5), and a high-energy cutoff near 100 keV. From RXTE monitoring, we find tentative evidence for a significant fraction of the Fe line flux to track continuum variations on time scales < 700 days.

Download