Memory coherence of a sympathetically cooled trapped-ion qubit


Abstract in English

We demonstrate sympathetic cooling of a 43Ca+ trapped-ion memory qubit by a 40Ca+ coolant ion near the ground state of both axial motional modes, whilst maintaining coherence of the qubit. This is an essential ingredient in trapped-ion quantum computers. The isotope shifts are sufficient to suppress decoherence and phase shifts of the memory qubit due to the cooling light which illuminates both ions. We measure the qubit coherence during 10 cycles of sideband cooling, finding a coherence loss of 3.3% per cooling cycle. The natural limit of the method is O(0.01%) infidelity per cooling cycle.

Download