The latest results of an ongoing project for the lattice simulation of QCD with a single quark flavor are presented. The Symanzik tree-level-improved Wilson action is adopted in the gauge sector and the (unimproved) Wilson action for the fermion. Results from new simulations with one step of Stout-smearing (rho=0.15) in the fermion action are discussed. The one-flavor theory is simulated by a polynomial hybrid Monte Carlo algorithm (PHMC) at beta=4.0 corresponding to a = 0.13fm, on 16^3x32 and 24^3x48 lattices; the box-size is L = 2.1fm and L = 3.1fm, respectively. At the lightest simulated quark mass the (partially quenched) pion mass is ~300 MeV. The masses of the lightest bound states are computed, including the flavor singlet scalar and pseudoscalar mesons sigma_s and eta_s, the scalar glueball 0^++, and the Delta^++ baryon. Relics of SUSY in the mass spectrum, expected from a large N_c orientifold equivalence with the N=1 supersymmetric Yang-Mills theory, are discussed.