We have studied magnetically frustrated Tb$_2$Sn$_2$O$_7$ by neutron diffraction and high resolution energy-resolved neutron scattering. At 0.1 K, we observe short range magnetic correlations with a typical scale of 4 AA, close to the near neighbor distance between Tb$^{3+}$ ions. %(3.686 AA), This short range order coexists with ferromagnetic correlations and long range spin ice order at the scales of 18 and 190 AA, respectively. Spin dynamics was investigated at a time scale down to 10$^{-9}$s, by energy-resolved experiments on a backscattering spectrometer. We observe a freezing of the spin dynamics for all length-scales, with a strong slowing down of the spin fluctuations when long range order settles in. We discuss the spin fluctuations remaining in the ground state in comparison with previous data obtained by muon spectroscopy.