Do you want to publish a course? Click here

Search for neutrinoless double-beta decay of Ge-76 with GERDA

153   0   0.0 ( 0 )
 Added by Karl-Tasso Knoepfle
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

GERDA, the GERmanium Detector Array experiment, is a new double beta-decay experiment which is currently under construction in the INFN National Gran Sasso Laboratory (LNGS), Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments. The paper discusses motivation, physics reach, design and status of construction of GERDA, and presents some R&D results.



rate research

Read More

The GERDA experiment searches for the lepton number violating neutrinoless double beta decay of $^{76}$Ge ($^{76}$Ge $rightarrow$ $^{76}$Se + 2e$^-$) operating bare Ge diodes with an enriched $^{76}$Ge fraction in liquid argon. The exposure for BEGe-type detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of $1.0_{-0.4}^{+0.6}cdot10^{-3}$ cts/(keV$cdot$kg$cdot$yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0$ ubetabeta$ experiment. No signal is observed and a new 90 % C.L. lower limit for the half-life of $8.0cdot10^{25}$ yr is placed when combining with our previous data. The median expected sensitivity assuming no signal is $5.8cdot10^{25}$ yr.
This paper presents a review of the search for neutrinoless double beta decay of $^{76}$Ge with emphasis on the recent results of the GERDA experiment. It includes an appraisal of fifty years of research on this topic as well as an outlook.
115 - Giovanni Benato 2015
The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr (90% CL). After a review of the experimental setup and of the main Phase I results, the hardware upgrade for Gerda Phase II is described, and the physics reach of the new data collection is reported.
The GERmanium Detector Array (GERDA) experiment located at the INFN Gran Sasso Laboratory (Italy), is looking for the neutrinoless double beta decay of Ge76, by using high-purity germanium detectors made from isotopically enriched material. The combination of the novel experimental design, the careful material selection for radio-purity and the active/passive shielding techniques result in a very low residual background at the Q-value of the decay, about 1e-3 counts/(keV kg yr). This makes GERDA the first experiment in the field to be background-free for the complete design exposure of 100 kg yr. A search for neutrinoless double beta decay was performed with a total exposure of 47.7 kg yr: 23.2 kg yr come from the second phase (Phase II) of the experiment, in which the background is reduced by about a factor of ten with respect to the previous phase. The analysis presented in this paper includes 12.4 kg yr of new Phase II data. No evidence for a possible signal is found: the lower limit for the half-life of Ge76 is 8.0e25 yr at 90% CL. The experimental median sensitivity is 5.8e25 yr. The experiment is currently taking data. As it is running in a background-free regime, its sensitivity grows linearly with exposure and it is expected to surpass 1e26 yr within 2018.
The Standard Model of particle physics cannot explain the dominance of matter over anti-matter in our Universe. In many model extensions this is a very natural consequence of neutrinos being their own anti-particles (Majorana particles) which implies that a lepton number violating radioactive decay named neutrinoless double beta ($0 ubetabeta$) decay should exist. The detection of this extremely rare hypothetical process requires utmost suppression of any kind of backgrounds. The GERDA collaboration searches for $0 ubetabeta$ decay of $^{76}$Ge ($^{76}rm{Ge} rightarrow,^{76}rm{Se} + 2e^-$) by operating bare detectors made from germanium with enriched $^{76}$Ge fraction in liquid argon. Here, we report on first data of GERDA Phase II. A background level of $approx10^{-3}$ cts/(keV$cdot$kg$cdot$yr) has been achieved which is the world-best if weighted by the narrow energy-signal region of germanium detectors. Combining Phase I and II data we find no signal and deduce a new lower limit for the half-life of $5.3cdot10^{25}$ yr at 90 % C.L. Our sensitivity of $4.0cdot10^{25}$ yr is competitive with the one of experiments with significantly larger isotope mass. GERDA is the first $0 ubetabeta$ experiment that will be background-free up to its design exposure. This progress relies on a novel active veto system, the superior germanium detector energy resolution and the improved background recognition of our new detectors. The unique discovery potential of an essentially background-free search for $0 ubetabeta$ decay motivates a larger germanium experiment with higher sensitivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا